Metamath Proof Explorer


Theorem pwfi2en

Description: Finitely supported indicator functions are equinumerous to finite subsets.MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015) (Revised by AV, 14-Jun-2020)

Ref Expression
Hypothesis pwfi2en.s 𝑆 = { 𝑦 ∈ ( 2om 𝐴 ) ∣ 𝑦 finSupp ∅ }
Assertion pwfi2en ( 𝐴𝑉𝑆 ≈ ( 𝒫 𝐴 ∩ Fin ) )

Proof

Step Hyp Ref Expression
1 pwfi2en.s 𝑆 = { 𝑦 ∈ ( 2om 𝐴 ) ∣ 𝑦 finSupp ∅ }
2 eqid ( 𝑥𝑆 ↦ ( 𝑥 “ { 1o } ) ) = ( 𝑥𝑆 ↦ ( 𝑥 “ { 1o } ) )
3 1 2 pwfi2f1o ( 𝐴𝑉 → ( 𝑥𝑆 ↦ ( 𝑥 “ { 1o } ) ) : 𝑆1-1-onto→ ( 𝒫 𝐴 ∩ Fin ) )
4 ovex ( 2om 𝐴 ) ∈ V
5 1 4 rabex2 𝑆 ∈ V
6 5 f1oen ( ( 𝑥𝑆 ↦ ( 𝑥 “ { 1o } ) ) : 𝑆1-1-onto→ ( 𝒫 𝐴 ∩ Fin ) → 𝑆 ≈ ( 𝒫 𝐴 ∩ Fin ) )
7 3 6 syl ( 𝐴𝑉𝑆 ≈ ( 𝒫 𝐴 ∩ Fin ) )