Metamath Proof Explorer


Theorem frlmpwfi

Description: Formal linear combinations over Z/2Z are equivalent to finite subsets. MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015) (Proof shortened by AV, 14-Jun-2020)

Ref Expression
Hypotheses frlmpwfi.r 𝑅 = ( ℤ/nℤ ‘ 2 )
frlmpwfi.y 𝑌 = ( 𝑅 freeLMod 𝐼 )
frlmpwfi.b 𝐵 = ( Base ‘ 𝑌 )
Assertion frlmpwfi ( 𝐼𝑉𝐵 ≈ ( 𝒫 𝐼 ∩ Fin ) )

Proof

Step Hyp Ref Expression
1 frlmpwfi.r 𝑅 = ( ℤ/nℤ ‘ 2 )
2 frlmpwfi.y 𝑌 = ( 𝑅 freeLMod 𝐼 )
3 frlmpwfi.b 𝐵 = ( Base ‘ 𝑌 )
4 1 fvexi 𝑅 ∈ V
5 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
6 eqid ( 0g𝑅 ) = ( 0g𝑅 )
7 eqid { 𝑥 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ∣ 𝑥 finSupp ( 0g𝑅 ) } = { 𝑥 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ∣ 𝑥 finSupp ( 0g𝑅 ) }
8 2 5 6 7 frlmbas ( ( 𝑅 ∈ V ∧ 𝐼𝑉 ) → { 𝑥 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ∣ 𝑥 finSupp ( 0g𝑅 ) } = ( Base ‘ 𝑌 ) )
9 4 8 mpan ( 𝐼𝑉 → { 𝑥 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ∣ 𝑥 finSupp ( 0g𝑅 ) } = ( Base ‘ 𝑌 ) )
10 9 3 eqtr4di ( 𝐼𝑉 → { 𝑥 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ∣ 𝑥 finSupp ( 0g𝑅 ) } = 𝐵 )
11 eqid { 𝑥 ∈ ( 2om 𝐼 ) ∣ 𝑥 finSupp ∅ } = { 𝑥 ∈ ( 2om 𝐼 ) ∣ 𝑥 finSupp ∅ }
12 enrefg ( 𝐼𝑉𝐼𝐼 )
13 2nn 2 ∈ ℕ
14 1 5 znhash ( 2 ∈ ℕ → ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 2 )
15 13 14 ax-mp ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 2
16 hash2 ( ♯ ‘ 2o ) = 2
17 15 16 eqtr4i ( ♯ ‘ ( Base ‘ 𝑅 ) ) = ( ♯ ‘ 2o )
18 2nn0 2 ∈ ℕ0
19 15 18 eqeltri ( ♯ ‘ ( Base ‘ 𝑅 ) ) ∈ ℕ0
20 fvex ( Base ‘ 𝑅 ) ∈ V
21 hashclb ( ( Base ‘ 𝑅 ) ∈ V → ( ( Base ‘ 𝑅 ) ∈ Fin ↔ ( ♯ ‘ ( Base ‘ 𝑅 ) ) ∈ ℕ0 ) )
22 20 21 ax-mp ( ( Base ‘ 𝑅 ) ∈ Fin ↔ ( ♯ ‘ ( Base ‘ 𝑅 ) ) ∈ ℕ0 )
23 19 22 mpbir ( Base ‘ 𝑅 ) ∈ Fin
24 2onn 2o ∈ ω
25 nnfi ( 2o ∈ ω → 2o ∈ Fin )
26 24 25 ax-mp 2o ∈ Fin
27 hashen ( ( ( Base ‘ 𝑅 ) ∈ Fin ∧ 2o ∈ Fin ) → ( ( ♯ ‘ ( Base ‘ 𝑅 ) ) = ( ♯ ‘ 2o ) ↔ ( Base ‘ 𝑅 ) ≈ 2o ) )
28 23 26 27 mp2an ( ( ♯ ‘ ( Base ‘ 𝑅 ) ) = ( ♯ ‘ 2o ) ↔ ( Base ‘ 𝑅 ) ≈ 2o )
29 17 28 mpbi ( Base ‘ 𝑅 ) ≈ 2o
30 29 a1i ( 𝐼𝑉 → ( Base ‘ 𝑅 ) ≈ 2o )
31 1 zncrng ( 2 ∈ ℕ0𝑅 ∈ CRing )
32 crngring ( 𝑅 ∈ CRing → 𝑅 ∈ Ring )
33 18 31 32 mp2b 𝑅 ∈ Ring
34 5 6 ring0cl ( 𝑅 ∈ Ring → ( 0g𝑅 ) ∈ ( Base ‘ 𝑅 ) )
35 33 34 mp1i ( 𝐼𝑉 → ( 0g𝑅 ) ∈ ( Base ‘ 𝑅 ) )
36 2on0 2o ≠ ∅
37 2on 2o ∈ On
38 on0eln0 ( 2o ∈ On → ( ∅ ∈ 2o ↔ 2o ≠ ∅ ) )
39 37 38 ax-mp ( ∅ ∈ 2o ↔ 2o ≠ ∅ )
40 36 39 mpbir ∅ ∈ 2o
41 40 a1i ( 𝐼𝑉 → ∅ ∈ 2o )
42 7 11 12 30 35 41 mapfien2 ( 𝐼𝑉 → { 𝑥 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ∣ 𝑥 finSupp ( 0g𝑅 ) } ≈ { 𝑥 ∈ ( 2om 𝐼 ) ∣ 𝑥 finSupp ∅ } )
43 10 42 eqbrtrrd ( 𝐼𝑉𝐵 ≈ { 𝑥 ∈ ( 2om 𝐼 ) ∣ 𝑥 finSupp ∅ } )
44 11 pwfi2en ( 𝐼𝑉 → { 𝑥 ∈ ( 2om 𝐼 ) ∣ 𝑥 finSupp ∅ } ≈ ( 𝒫 𝐼 ∩ Fin ) )
45 entr ( ( 𝐵 ≈ { 𝑥 ∈ ( 2om 𝐼 ) ∣ 𝑥 finSupp ∅ } ∧ { 𝑥 ∈ ( 2om 𝐼 ) ∣ 𝑥 finSupp ∅ } ≈ ( 𝒫 𝐼 ∩ Fin ) ) → 𝐵 ≈ ( 𝒫 𝐼 ∩ Fin ) )
46 43 44 45 syl2anc ( 𝐼𝑉𝐵 ≈ ( 𝒫 𝐼 ∩ Fin ) )