| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frlmpwfi.r |
⊢ 𝑅 = ( ℤ/nℤ ‘ 2 ) |
| 2 |
|
frlmpwfi.y |
⊢ 𝑌 = ( 𝑅 freeLMod 𝐼 ) |
| 3 |
|
frlmpwfi.b |
⊢ 𝐵 = ( Base ‘ 𝑌 ) |
| 4 |
1
|
fvexi |
⊢ 𝑅 ∈ V |
| 5 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 6 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 7 |
|
eqid |
⊢ { 𝑥 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ∣ 𝑥 finSupp ( 0g ‘ 𝑅 ) } = { 𝑥 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ∣ 𝑥 finSupp ( 0g ‘ 𝑅 ) } |
| 8 |
2 5 6 7
|
frlmbas |
⊢ ( ( 𝑅 ∈ V ∧ 𝐼 ∈ 𝑉 ) → { 𝑥 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ∣ 𝑥 finSupp ( 0g ‘ 𝑅 ) } = ( Base ‘ 𝑌 ) ) |
| 9 |
4 8
|
mpan |
⊢ ( 𝐼 ∈ 𝑉 → { 𝑥 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ∣ 𝑥 finSupp ( 0g ‘ 𝑅 ) } = ( Base ‘ 𝑌 ) ) |
| 10 |
9 3
|
eqtr4di |
⊢ ( 𝐼 ∈ 𝑉 → { 𝑥 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ∣ 𝑥 finSupp ( 0g ‘ 𝑅 ) } = 𝐵 ) |
| 11 |
|
eqid |
⊢ { 𝑥 ∈ ( 2o ↑m 𝐼 ) ∣ 𝑥 finSupp ∅ } = { 𝑥 ∈ ( 2o ↑m 𝐼 ) ∣ 𝑥 finSupp ∅ } |
| 12 |
|
enrefg |
⊢ ( 𝐼 ∈ 𝑉 → 𝐼 ≈ 𝐼 ) |
| 13 |
|
2nn |
⊢ 2 ∈ ℕ |
| 14 |
1 5
|
znhash |
⊢ ( 2 ∈ ℕ → ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 2 ) |
| 15 |
13 14
|
ax-mp |
⊢ ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 2 |
| 16 |
|
hash2 |
⊢ ( ♯ ‘ 2o ) = 2 |
| 17 |
15 16
|
eqtr4i |
⊢ ( ♯ ‘ ( Base ‘ 𝑅 ) ) = ( ♯ ‘ 2o ) |
| 18 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 19 |
15 18
|
eqeltri |
⊢ ( ♯ ‘ ( Base ‘ 𝑅 ) ) ∈ ℕ0 |
| 20 |
|
fvex |
⊢ ( Base ‘ 𝑅 ) ∈ V |
| 21 |
|
hashclb |
⊢ ( ( Base ‘ 𝑅 ) ∈ V → ( ( Base ‘ 𝑅 ) ∈ Fin ↔ ( ♯ ‘ ( Base ‘ 𝑅 ) ) ∈ ℕ0 ) ) |
| 22 |
20 21
|
ax-mp |
⊢ ( ( Base ‘ 𝑅 ) ∈ Fin ↔ ( ♯ ‘ ( Base ‘ 𝑅 ) ) ∈ ℕ0 ) |
| 23 |
19 22
|
mpbir |
⊢ ( Base ‘ 𝑅 ) ∈ Fin |
| 24 |
|
2onn |
⊢ 2o ∈ ω |
| 25 |
|
nnfi |
⊢ ( 2o ∈ ω → 2o ∈ Fin ) |
| 26 |
24 25
|
ax-mp |
⊢ 2o ∈ Fin |
| 27 |
|
hashen |
⊢ ( ( ( Base ‘ 𝑅 ) ∈ Fin ∧ 2o ∈ Fin ) → ( ( ♯ ‘ ( Base ‘ 𝑅 ) ) = ( ♯ ‘ 2o ) ↔ ( Base ‘ 𝑅 ) ≈ 2o ) ) |
| 28 |
23 26 27
|
mp2an |
⊢ ( ( ♯ ‘ ( Base ‘ 𝑅 ) ) = ( ♯ ‘ 2o ) ↔ ( Base ‘ 𝑅 ) ≈ 2o ) |
| 29 |
17 28
|
mpbi |
⊢ ( Base ‘ 𝑅 ) ≈ 2o |
| 30 |
29
|
a1i |
⊢ ( 𝐼 ∈ 𝑉 → ( Base ‘ 𝑅 ) ≈ 2o ) |
| 31 |
1
|
zncrng |
⊢ ( 2 ∈ ℕ0 → 𝑅 ∈ CRing ) |
| 32 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
| 33 |
18 31 32
|
mp2b |
⊢ 𝑅 ∈ Ring |
| 34 |
5 6
|
ring0cl |
⊢ ( 𝑅 ∈ Ring → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 35 |
33 34
|
mp1i |
⊢ ( 𝐼 ∈ 𝑉 → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 36 |
|
2on0 |
⊢ 2o ≠ ∅ |
| 37 |
|
2on |
⊢ 2o ∈ On |
| 38 |
|
on0eln0 |
⊢ ( 2o ∈ On → ( ∅ ∈ 2o ↔ 2o ≠ ∅ ) ) |
| 39 |
37 38
|
ax-mp |
⊢ ( ∅ ∈ 2o ↔ 2o ≠ ∅ ) |
| 40 |
36 39
|
mpbir |
⊢ ∅ ∈ 2o |
| 41 |
40
|
a1i |
⊢ ( 𝐼 ∈ 𝑉 → ∅ ∈ 2o ) |
| 42 |
7 11 12 30 35 41
|
mapfien2 |
⊢ ( 𝐼 ∈ 𝑉 → { 𝑥 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ∣ 𝑥 finSupp ( 0g ‘ 𝑅 ) } ≈ { 𝑥 ∈ ( 2o ↑m 𝐼 ) ∣ 𝑥 finSupp ∅ } ) |
| 43 |
10 42
|
eqbrtrrd |
⊢ ( 𝐼 ∈ 𝑉 → 𝐵 ≈ { 𝑥 ∈ ( 2o ↑m 𝐼 ) ∣ 𝑥 finSupp ∅ } ) |
| 44 |
11
|
pwfi2en |
⊢ ( 𝐼 ∈ 𝑉 → { 𝑥 ∈ ( 2o ↑m 𝐼 ) ∣ 𝑥 finSupp ∅ } ≈ ( 𝒫 𝐼 ∩ Fin ) ) |
| 45 |
|
entr |
⊢ ( ( 𝐵 ≈ { 𝑥 ∈ ( 2o ↑m 𝐼 ) ∣ 𝑥 finSupp ∅ } ∧ { 𝑥 ∈ ( 2o ↑m 𝐼 ) ∣ 𝑥 finSupp ∅ } ≈ ( 𝒫 𝐼 ∩ Fin ) ) → 𝐵 ≈ ( 𝒫 𝐼 ∩ Fin ) ) |
| 46 |
43 44 45
|
syl2anc |
⊢ ( 𝐼 ∈ 𝑉 → 𝐵 ≈ ( 𝒫 𝐼 ∩ Fin ) ) |