| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frlmpwfi.r | ⊢ 𝑅  =  ( ℤ/nℤ ‘ 2 ) | 
						
							| 2 |  | frlmpwfi.y | ⊢ 𝑌  =  ( 𝑅  freeLMod  𝐼 ) | 
						
							| 3 |  | frlmpwfi.b | ⊢ 𝐵  =  ( Base ‘ 𝑌 ) | 
						
							| 4 | 1 | fvexi | ⊢ 𝑅  ∈  V | 
						
							| 5 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 6 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 7 |  | eqid | ⊢ { 𝑥  ∈  ( ( Base ‘ 𝑅 )  ↑m  𝐼 )  ∣  𝑥  finSupp  ( 0g ‘ 𝑅 ) }  =  { 𝑥  ∈  ( ( Base ‘ 𝑅 )  ↑m  𝐼 )  ∣  𝑥  finSupp  ( 0g ‘ 𝑅 ) } | 
						
							| 8 | 2 5 6 7 | frlmbas | ⊢ ( ( 𝑅  ∈  V  ∧  𝐼  ∈  𝑉 )  →  { 𝑥  ∈  ( ( Base ‘ 𝑅 )  ↑m  𝐼 )  ∣  𝑥  finSupp  ( 0g ‘ 𝑅 ) }  =  ( Base ‘ 𝑌 ) ) | 
						
							| 9 | 4 8 | mpan | ⊢ ( 𝐼  ∈  𝑉  →  { 𝑥  ∈  ( ( Base ‘ 𝑅 )  ↑m  𝐼 )  ∣  𝑥  finSupp  ( 0g ‘ 𝑅 ) }  =  ( Base ‘ 𝑌 ) ) | 
						
							| 10 | 9 3 | eqtr4di | ⊢ ( 𝐼  ∈  𝑉  →  { 𝑥  ∈  ( ( Base ‘ 𝑅 )  ↑m  𝐼 )  ∣  𝑥  finSupp  ( 0g ‘ 𝑅 ) }  =  𝐵 ) | 
						
							| 11 |  | eqid | ⊢ { 𝑥  ∈  ( 2o  ↑m  𝐼 )  ∣  𝑥  finSupp  ∅ }  =  { 𝑥  ∈  ( 2o  ↑m  𝐼 )  ∣  𝑥  finSupp  ∅ } | 
						
							| 12 |  | enrefg | ⊢ ( 𝐼  ∈  𝑉  →  𝐼  ≈  𝐼 ) | 
						
							| 13 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 14 | 1 5 | znhash | ⊢ ( 2  ∈  ℕ  →  ( ♯ ‘ ( Base ‘ 𝑅 ) )  =  2 ) | 
						
							| 15 | 13 14 | ax-mp | ⊢ ( ♯ ‘ ( Base ‘ 𝑅 ) )  =  2 | 
						
							| 16 |  | hash2 | ⊢ ( ♯ ‘ 2o )  =  2 | 
						
							| 17 | 15 16 | eqtr4i | ⊢ ( ♯ ‘ ( Base ‘ 𝑅 ) )  =  ( ♯ ‘ 2o ) | 
						
							| 18 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 19 | 15 18 | eqeltri | ⊢ ( ♯ ‘ ( Base ‘ 𝑅 ) )  ∈  ℕ0 | 
						
							| 20 |  | fvex | ⊢ ( Base ‘ 𝑅 )  ∈  V | 
						
							| 21 |  | hashclb | ⊢ ( ( Base ‘ 𝑅 )  ∈  V  →  ( ( Base ‘ 𝑅 )  ∈  Fin  ↔  ( ♯ ‘ ( Base ‘ 𝑅 ) )  ∈  ℕ0 ) ) | 
						
							| 22 | 20 21 | ax-mp | ⊢ ( ( Base ‘ 𝑅 )  ∈  Fin  ↔  ( ♯ ‘ ( Base ‘ 𝑅 ) )  ∈  ℕ0 ) | 
						
							| 23 | 19 22 | mpbir | ⊢ ( Base ‘ 𝑅 )  ∈  Fin | 
						
							| 24 |  | 2onn | ⊢ 2o  ∈  ω | 
						
							| 25 |  | nnfi | ⊢ ( 2o  ∈  ω  →  2o  ∈  Fin ) | 
						
							| 26 | 24 25 | ax-mp | ⊢ 2o  ∈  Fin | 
						
							| 27 |  | hashen | ⊢ ( ( ( Base ‘ 𝑅 )  ∈  Fin  ∧  2o  ∈  Fin )  →  ( ( ♯ ‘ ( Base ‘ 𝑅 ) )  =  ( ♯ ‘ 2o )  ↔  ( Base ‘ 𝑅 )  ≈  2o ) ) | 
						
							| 28 | 23 26 27 | mp2an | ⊢ ( ( ♯ ‘ ( Base ‘ 𝑅 ) )  =  ( ♯ ‘ 2o )  ↔  ( Base ‘ 𝑅 )  ≈  2o ) | 
						
							| 29 | 17 28 | mpbi | ⊢ ( Base ‘ 𝑅 )  ≈  2o | 
						
							| 30 | 29 | a1i | ⊢ ( 𝐼  ∈  𝑉  →  ( Base ‘ 𝑅 )  ≈  2o ) | 
						
							| 31 | 1 | zncrng | ⊢ ( 2  ∈  ℕ0  →  𝑅  ∈  CRing ) | 
						
							| 32 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 33 | 18 31 32 | mp2b | ⊢ 𝑅  ∈  Ring | 
						
							| 34 | 5 6 | ring0cl | ⊢ ( 𝑅  ∈  Ring  →  ( 0g ‘ 𝑅 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 35 | 33 34 | mp1i | ⊢ ( 𝐼  ∈  𝑉  →  ( 0g ‘ 𝑅 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 36 |  | 2on0 | ⊢ 2o  ≠  ∅ | 
						
							| 37 |  | 2on | ⊢ 2o  ∈  On | 
						
							| 38 |  | on0eln0 | ⊢ ( 2o  ∈  On  →  ( ∅  ∈  2o  ↔  2o  ≠  ∅ ) ) | 
						
							| 39 | 37 38 | ax-mp | ⊢ ( ∅  ∈  2o  ↔  2o  ≠  ∅ ) | 
						
							| 40 | 36 39 | mpbir | ⊢ ∅  ∈  2o | 
						
							| 41 | 40 | a1i | ⊢ ( 𝐼  ∈  𝑉  →  ∅  ∈  2o ) | 
						
							| 42 | 7 11 12 30 35 41 | mapfien2 | ⊢ ( 𝐼  ∈  𝑉  →  { 𝑥  ∈  ( ( Base ‘ 𝑅 )  ↑m  𝐼 )  ∣  𝑥  finSupp  ( 0g ‘ 𝑅 ) }  ≈  { 𝑥  ∈  ( 2o  ↑m  𝐼 )  ∣  𝑥  finSupp  ∅ } ) | 
						
							| 43 | 10 42 | eqbrtrrd | ⊢ ( 𝐼  ∈  𝑉  →  𝐵  ≈  { 𝑥  ∈  ( 2o  ↑m  𝐼 )  ∣  𝑥  finSupp  ∅ } ) | 
						
							| 44 | 11 | pwfi2en | ⊢ ( 𝐼  ∈  𝑉  →  { 𝑥  ∈  ( 2o  ↑m  𝐼 )  ∣  𝑥  finSupp  ∅ }  ≈  ( 𝒫  𝐼  ∩  Fin ) ) | 
						
							| 45 |  | entr | ⊢ ( ( 𝐵  ≈  { 𝑥  ∈  ( 2o  ↑m  𝐼 )  ∣  𝑥  finSupp  ∅ }  ∧  { 𝑥  ∈  ( 2o  ↑m  𝐼 )  ∣  𝑥  finSupp  ∅ }  ≈  ( 𝒫  𝐼  ∩  Fin ) )  →  𝐵  ≈  ( 𝒫  𝐼  ∩  Fin ) ) | 
						
							| 46 | 43 44 45 | syl2anc | ⊢ ( 𝐼  ∈  𝑉  →  𝐵  ≈  ( 𝒫  𝐼  ∩  Fin ) ) |