Step |
Hyp |
Ref |
Expression |
1 |
|
frlmpwfi.r |
⊢ 𝑅 = ( ℤ/nℤ ‘ 2 ) |
2 |
|
frlmpwfi.y |
⊢ 𝑌 = ( 𝑅 freeLMod 𝐼 ) |
3 |
|
frlmpwfi.b |
⊢ 𝐵 = ( Base ‘ 𝑌 ) |
4 |
1
|
fvexi |
⊢ 𝑅 ∈ V |
5 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
6 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
7 |
|
eqid |
⊢ { 𝑥 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ∣ 𝑥 finSupp ( 0g ‘ 𝑅 ) } = { 𝑥 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ∣ 𝑥 finSupp ( 0g ‘ 𝑅 ) } |
8 |
2 5 6 7
|
frlmbas |
⊢ ( ( 𝑅 ∈ V ∧ 𝐼 ∈ 𝑉 ) → { 𝑥 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ∣ 𝑥 finSupp ( 0g ‘ 𝑅 ) } = ( Base ‘ 𝑌 ) ) |
9 |
4 8
|
mpan |
⊢ ( 𝐼 ∈ 𝑉 → { 𝑥 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ∣ 𝑥 finSupp ( 0g ‘ 𝑅 ) } = ( Base ‘ 𝑌 ) ) |
10 |
9 3
|
eqtr4di |
⊢ ( 𝐼 ∈ 𝑉 → { 𝑥 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ∣ 𝑥 finSupp ( 0g ‘ 𝑅 ) } = 𝐵 ) |
11 |
|
eqid |
⊢ { 𝑥 ∈ ( 2o ↑m 𝐼 ) ∣ 𝑥 finSupp ∅ } = { 𝑥 ∈ ( 2o ↑m 𝐼 ) ∣ 𝑥 finSupp ∅ } |
12 |
|
enrefg |
⊢ ( 𝐼 ∈ 𝑉 → 𝐼 ≈ 𝐼 ) |
13 |
|
2nn |
⊢ 2 ∈ ℕ |
14 |
1 5
|
znhash |
⊢ ( 2 ∈ ℕ → ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 2 ) |
15 |
13 14
|
ax-mp |
⊢ ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 2 |
16 |
|
hash2 |
⊢ ( ♯ ‘ 2o ) = 2 |
17 |
15 16
|
eqtr4i |
⊢ ( ♯ ‘ ( Base ‘ 𝑅 ) ) = ( ♯ ‘ 2o ) |
18 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
19 |
15 18
|
eqeltri |
⊢ ( ♯ ‘ ( Base ‘ 𝑅 ) ) ∈ ℕ0 |
20 |
|
fvex |
⊢ ( Base ‘ 𝑅 ) ∈ V |
21 |
|
hashclb |
⊢ ( ( Base ‘ 𝑅 ) ∈ V → ( ( Base ‘ 𝑅 ) ∈ Fin ↔ ( ♯ ‘ ( Base ‘ 𝑅 ) ) ∈ ℕ0 ) ) |
22 |
20 21
|
ax-mp |
⊢ ( ( Base ‘ 𝑅 ) ∈ Fin ↔ ( ♯ ‘ ( Base ‘ 𝑅 ) ) ∈ ℕ0 ) |
23 |
19 22
|
mpbir |
⊢ ( Base ‘ 𝑅 ) ∈ Fin |
24 |
|
2onn |
⊢ 2o ∈ ω |
25 |
|
nnfi |
⊢ ( 2o ∈ ω → 2o ∈ Fin ) |
26 |
24 25
|
ax-mp |
⊢ 2o ∈ Fin |
27 |
|
hashen |
⊢ ( ( ( Base ‘ 𝑅 ) ∈ Fin ∧ 2o ∈ Fin ) → ( ( ♯ ‘ ( Base ‘ 𝑅 ) ) = ( ♯ ‘ 2o ) ↔ ( Base ‘ 𝑅 ) ≈ 2o ) ) |
28 |
23 26 27
|
mp2an |
⊢ ( ( ♯ ‘ ( Base ‘ 𝑅 ) ) = ( ♯ ‘ 2o ) ↔ ( Base ‘ 𝑅 ) ≈ 2o ) |
29 |
17 28
|
mpbi |
⊢ ( Base ‘ 𝑅 ) ≈ 2o |
30 |
29
|
a1i |
⊢ ( 𝐼 ∈ 𝑉 → ( Base ‘ 𝑅 ) ≈ 2o ) |
31 |
1
|
zncrng |
⊢ ( 2 ∈ ℕ0 → 𝑅 ∈ CRing ) |
32 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
33 |
18 31 32
|
mp2b |
⊢ 𝑅 ∈ Ring |
34 |
5 6
|
ring0cl |
⊢ ( 𝑅 ∈ Ring → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
35 |
33 34
|
mp1i |
⊢ ( 𝐼 ∈ 𝑉 → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
36 |
|
2on0 |
⊢ 2o ≠ ∅ |
37 |
|
2on |
⊢ 2o ∈ On |
38 |
|
on0eln0 |
⊢ ( 2o ∈ On → ( ∅ ∈ 2o ↔ 2o ≠ ∅ ) ) |
39 |
37 38
|
ax-mp |
⊢ ( ∅ ∈ 2o ↔ 2o ≠ ∅ ) |
40 |
36 39
|
mpbir |
⊢ ∅ ∈ 2o |
41 |
40
|
a1i |
⊢ ( 𝐼 ∈ 𝑉 → ∅ ∈ 2o ) |
42 |
7 11 12 30 35 41
|
mapfien2 |
⊢ ( 𝐼 ∈ 𝑉 → { 𝑥 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ∣ 𝑥 finSupp ( 0g ‘ 𝑅 ) } ≈ { 𝑥 ∈ ( 2o ↑m 𝐼 ) ∣ 𝑥 finSupp ∅ } ) |
43 |
10 42
|
eqbrtrrd |
⊢ ( 𝐼 ∈ 𝑉 → 𝐵 ≈ { 𝑥 ∈ ( 2o ↑m 𝐼 ) ∣ 𝑥 finSupp ∅ } ) |
44 |
11
|
pwfi2en |
⊢ ( 𝐼 ∈ 𝑉 → { 𝑥 ∈ ( 2o ↑m 𝐼 ) ∣ 𝑥 finSupp ∅ } ≈ ( 𝒫 𝐼 ∩ Fin ) ) |
45 |
|
entr |
⊢ ( ( 𝐵 ≈ { 𝑥 ∈ ( 2o ↑m 𝐼 ) ∣ 𝑥 finSupp ∅ } ∧ { 𝑥 ∈ ( 2o ↑m 𝐼 ) ∣ 𝑥 finSupp ∅ } ≈ ( 𝒫 𝐼 ∩ Fin ) ) → 𝐵 ≈ ( 𝒫 𝐼 ∩ Fin ) ) |
46 |
43 44 45
|
syl2anc |
⊢ ( 𝐼 ∈ 𝑉 → 𝐵 ≈ ( 𝒫 𝐼 ∩ Fin ) ) |