| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frlmpwfi.r |  |-  R = ( Z/nZ ` 2 ) | 
						
							| 2 |  | frlmpwfi.y |  |-  Y = ( R freeLMod I ) | 
						
							| 3 |  | frlmpwfi.b |  |-  B = ( Base ` Y ) | 
						
							| 4 | 1 | fvexi |  |-  R e. _V | 
						
							| 5 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 6 |  | eqid |  |-  ( 0g ` R ) = ( 0g ` R ) | 
						
							| 7 |  | eqid |  |-  { x e. ( ( Base ` R ) ^m I ) | x finSupp ( 0g ` R ) } = { x e. ( ( Base ` R ) ^m I ) | x finSupp ( 0g ` R ) } | 
						
							| 8 | 2 5 6 7 | frlmbas |  |-  ( ( R e. _V /\ I e. V ) -> { x e. ( ( Base ` R ) ^m I ) | x finSupp ( 0g ` R ) } = ( Base ` Y ) ) | 
						
							| 9 | 4 8 | mpan |  |-  ( I e. V -> { x e. ( ( Base ` R ) ^m I ) | x finSupp ( 0g ` R ) } = ( Base ` Y ) ) | 
						
							| 10 | 9 3 | eqtr4di |  |-  ( I e. V -> { x e. ( ( Base ` R ) ^m I ) | x finSupp ( 0g ` R ) } = B ) | 
						
							| 11 |  | eqid |  |-  { x e. ( 2o ^m I ) | x finSupp (/) } = { x e. ( 2o ^m I ) | x finSupp (/) } | 
						
							| 12 |  | enrefg |  |-  ( I e. V -> I ~~ I ) | 
						
							| 13 |  | 2nn |  |-  2 e. NN | 
						
							| 14 | 1 5 | znhash |  |-  ( 2 e. NN -> ( # ` ( Base ` R ) ) = 2 ) | 
						
							| 15 | 13 14 | ax-mp |  |-  ( # ` ( Base ` R ) ) = 2 | 
						
							| 16 |  | hash2 |  |-  ( # ` 2o ) = 2 | 
						
							| 17 | 15 16 | eqtr4i |  |-  ( # ` ( Base ` R ) ) = ( # ` 2o ) | 
						
							| 18 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 19 | 15 18 | eqeltri |  |-  ( # ` ( Base ` R ) ) e. NN0 | 
						
							| 20 |  | fvex |  |-  ( Base ` R ) e. _V | 
						
							| 21 |  | hashclb |  |-  ( ( Base ` R ) e. _V -> ( ( Base ` R ) e. Fin <-> ( # ` ( Base ` R ) ) e. NN0 ) ) | 
						
							| 22 | 20 21 | ax-mp |  |-  ( ( Base ` R ) e. Fin <-> ( # ` ( Base ` R ) ) e. NN0 ) | 
						
							| 23 | 19 22 | mpbir |  |-  ( Base ` R ) e. Fin | 
						
							| 24 |  | 2onn |  |-  2o e. _om | 
						
							| 25 |  | nnfi |  |-  ( 2o e. _om -> 2o e. Fin ) | 
						
							| 26 | 24 25 | ax-mp |  |-  2o e. Fin | 
						
							| 27 |  | hashen |  |-  ( ( ( Base ` R ) e. Fin /\ 2o e. Fin ) -> ( ( # ` ( Base ` R ) ) = ( # ` 2o ) <-> ( Base ` R ) ~~ 2o ) ) | 
						
							| 28 | 23 26 27 | mp2an |  |-  ( ( # ` ( Base ` R ) ) = ( # ` 2o ) <-> ( Base ` R ) ~~ 2o ) | 
						
							| 29 | 17 28 | mpbi |  |-  ( Base ` R ) ~~ 2o | 
						
							| 30 | 29 | a1i |  |-  ( I e. V -> ( Base ` R ) ~~ 2o ) | 
						
							| 31 | 1 | zncrng |  |-  ( 2 e. NN0 -> R e. CRing ) | 
						
							| 32 |  | crngring |  |-  ( R e. CRing -> R e. Ring ) | 
						
							| 33 | 18 31 32 | mp2b |  |-  R e. Ring | 
						
							| 34 | 5 6 | ring0cl |  |-  ( R e. Ring -> ( 0g ` R ) e. ( Base ` R ) ) | 
						
							| 35 | 33 34 | mp1i |  |-  ( I e. V -> ( 0g ` R ) e. ( Base ` R ) ) | 
						
							| 36 |  | 2on0 |  |-  2o =/= (/) | 
						
							| 37 |  | 2on |  |-  2o e. On | 
						
							| 38 |  | on0eln0 |  |-  ( 2o e. On -> ( (/) e. 2o <-> 2o =/= (/) ) ) | 
						
							| 39 | 37 38 | ax-mp |  |-  ( (/) e. 2o <-> 2o =/= (/) ) | 
						
							| 40 | 36 39 | mpbir |  |-  (/) e. 2o | 
						
							| 41 | 40 | a1i |  |-  ( I e. V -> (/) e. 2o ) | 
						
							| 42 | 7 11 12 30 35 41 | mapfien2 |  |-  ( I e. V -> { x e. ( ( Base ` R ) ^m I ) | x finSupp ( 0g ` R ) } ~~ { x e. ( 2o ^m I ) | x finSupp (/) } ) | 
						
							| 43 | 10 42 | eqbrtrrd |  |-  ( I e. V -> B ~~ { x e. ( 2o ^m I ) | x finSupp (/) } ) | 
						
							| 44 | 11 | pwfi2en |  |-  ( I e. V -> { x e. ( 2o ^m I ) | x finSupp (/) } ~~ ( ~P I i^i Fin ) ) | 
						
							| 45 |  | entr |  |-  ( ( B ~~ { x e. ( 2o ^m I ) | x finSupp (/) } /\ { x e. ( 2o ^m I ) | x finSupp (/) } ~~ ( ~P I i^i Fin ) ) -> B ~~ ( ~P I i^i Fin ) ) | 
						
							| 46 | 43 44 45 | syl2anc |  |-  ( I e. V -> B ~~ ( ~P I i^i Fin ) ) |