Step |
Hyp |
Ref |
Expression |
1 |
|
frlmpwfi.r |
|- R = ( Z/nZ ` 2 ) |
2 |
|
frlmpwfi.y |
|- Y = ( R freeLMod I ) |
3 |
|
frlmpwfi.b |
|- B = ( Base ` Y ) |
4 |
1
|
fvexi |
|- R e. _V |
5 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
6 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
7 |
|
eqid |
|- { x e. ( ( Base ` R ) ^m I ) | x finSupp ( 0g ` R ) } = { x e. ( ( Base ` R ) ^m I ) | x finSupp ( 0g ` R ) } |
8 |
2 5 6 7
|
frlmbas |
|- ( ( R e. _V /\ I e. V ) -> { x e. ( ( Base ` R ) ^m I ) | x finSupp ( 0g ` R ) } = ( Base ` Y ) ) |
9 |
4 8
|
mpan |
|- ( I e. V -> { x e. ( ( Base ` R ) ^m I ) | x finSupp ( 0g ` R ) } = ( Base ` Y ) ) |
10 |
9 3
|
eqtr4di |
|- ( I e. V -> { x e. ( ( Base ` R ) ^m I ) | x finSupp ( 0g ` R ) } = B ) |
11 |
|
eqid |
|- { x e. ( 2o ^m I ) | x finSupp (/) } = { x e. ( 2o ^m I ) | x finSupp (/) } |
12 |
|
enrefg |
|- ( I e. V -> I ~~ I ) |
13 |
|
2nn |
|- 2 e. NN |
14 |
1 5
|
znhash |
|- ( 2 e. NN -> ( # ` ( Base ` R ) ) = 2 ) |
15 |
13 14
|
ax-mp |
|- ( # ` ( Base ` R ) ) = 2 |
16 |
|
hash2 |
|- ( # ` 2o ) = 2 |
17 |
15 16
|
eqtr4i |
|- ( # ` ( Base ` R ) ) = ( # ` 2o ) |
18 |
|
2nn0 |
|- 2 e. NN0 |
19 |
15 18
|
eqeltri |
|- ( # ` ( Base ` R ) ) e. NN0 |
20 |
|
fvex |
|- ( Base ` R ) e. _V |
21 |
|
hashclb |
|- ( ( Base ` R ) e. _V -> ( ( Base ` R ) e. Fin <-> ( # ` ( Base ` R ) ) e. NN0 ) ) |
22 |
20 21
|
ax-mp |
|- ( ( Base ` R ) e. Fin <-> ( # ` ( Base ` R ) ) e. NN0 ) |
23 |
19 22
|
mpbir |
|- ( Base ` R ) e. Fin |
24 |
|
2onn |
|- 2o e. _om |
25 |
|
nnfi |
|- ( 2o e. _om -> 2o e. Fin ) |
26 |
24 25
|
ax-mp |
|- 2o e. Fin |
27 |
|
hashen |
|- ( ( ( Base ` R ) e. Fin /\ 2o e. Fin ) -> ( ( # ` ( Base ` R ) ) = ( # ` 2o ) <-> ( Base ` R ) ~~ 2o ) ) |
28 |
23 26 27
|
mp2an |
|- ( ( # ` ( Base ` R ) ) = ( # ` 2o ) <-> ( Base ` R ) ~~ 2o ) |
29 |
17 28
|
mpbi |
|- ( Base ` R ) ~~ 2o |
30 |
29
|
a1i |
|- ( I e. V -> ( Base ` R ) ~~ 2o ) |
31 |
1
|
zncrng |
|- ( 2 e. NN0 -> R e. CRing ) |
32 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
33 |
18 31 32
|
mp2b |
|- R e. Ring |
34 |
5 6
|
ring0cl |
|- ( R e. Ring -> ( 0g ` R ) e. ( Base ` R ) ) |
35 |
33 34
|
mp1i |
|- ( I e. V -> ( 0g ` R ) e. ( Base ` R ) ) |
36 |
|
2on0 |
|- 2o =/= (/) |
37 |
|
2on |
|- 2o e. On |
38 |
|
on0eln0 |
|- ( 2o e. On -> ( (/) e. 2o <-> 2o =/= (/) ) ) |
39 |
37 38
|
ax-mp |
|- ( (/) e. 2o <-> 2o =/= (/) ) |
40 |
36 39
|
mpbir |
|- (/) e. 2o |
41 |
40
|
a1i |
|- ( I e. V -> (/) e. 2o ) |
42 |
7 11 12 30 35 41
|
mapfien2 |
|- ( I e. V -> { x e. ( ( Base ` R ) ^m I ) | x finSupp ( 0g ` R ) } ~~ { x e. ( 2o ^m I ) | x finSupp (/) } ) |
43 |
10 42
|
eqbrtrrd |
|- ( I e. V -> B ~~ { x e. ( 2o ^m I ) | x finSupp (/) } ) |
44 |
11
|
pwfi2en |
|- ( I e. V -> { x e. ( 2o ^m I ) | x finSupp (/) } ~~ ( ~P I i^i Fin ) ) |
45 |
|
entr |
|- ( ( B ~~ { x e. ( 2o ^m I ) | x finSupp (/) } /\ { x e. ( 2o ^m I ) | x finSupp (/) } ~~ ( ~P I i^i Fin ) ) -> B ~~ ( ~P I i^i Fin ) ) |
46 |
43 44 45
|
syl2anc |
|- ( I e. V -> B ~~ ( ~P I i^i Fin ) ) |