Metamath Proof Explorer


Theorem frlmpwfi

Description: Formal linear combinations over Z/2Z are equivalent to finite subsets. MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015) (Proof shortened by AV, 14-Jun-2020)

Ref Expression
Hypotheses frlmpwfi.r R = / 2
frlmpwfi.y Y = R freeLMod I
frlmpwfi.b B = Base Y
Assertion frlmpwfi I V B 𝒫 I Fin

Proof

Step Hyp Ref Expression
1 frlmpwfi.r R = / 2
2 frlmpwfi.y Y = R freeLMod I
3 frlmpwfi.b B = Base Y
4 1 fvexi R V
5 eqid Base R = Base R
6 eqid 0 R = 0 R
7 eqid x Base R I | finSupp 0 R x = x Base R I | finSupp 0 R x
8 2 5 6 7 frlmbas R V I V x Base R I | finSupp 0 R x = Base Y
9 4 8 mpan I V x Base R I | finSupp 0 R x = Base Y
10 9 3 eqtr4di I V x Base R I | finSupp 0 R x = B
11 eqid x 2 𝑜 I | finSupp x = x 2 𝑜 I | finSupp x
12 enrefg I V I I
13 2nn 2
14 1 5 znhash 2 Base R = 2
15 13 14 ax-mp Base R = 2
16 hash2 2 𝑜 = 2
17 15 16 eqtr4i Base R = 2 𝑜
18 2nn0 2 0
19 15 18 eqeltri Base R 0
20 fvex Base R V
21 hashclb Base R V Base R Fin Base R 0
22 20 21 ax-mp Base R Fin Base R 0
23 19 22 mpbir Base R Fin
24 2onn 2 𝑜 ω
25 nnfi 2 𝑜 ω 2 𝑜 Fin
26 24 25 ax-mp 2 𝑜 Fin
27 hashen Base R Fin 2 𝑜 Fin Base R = 2 𝑜 Base R 2 𝑜
28 23 26 27 mp2an Base R = 2 𝑜 Base R 2 𝑜
29 17 28 mpbi Base R 2 𝑜
30 29 a1i I V Base R 2 𝑜
31 1 zncrng 2 0 R CRing
32 crngring R CRing R Ring
33 18 31 32 mp2b R Ring
34 5 6 ring0cl R Ring 0 R Base R
35 33 34 mp1i I V 0 R Base R
36 2on0 2 𝑜
37 2on 2 𝑜 On
38 on0eln0 2 𝑜 On 2 𝑜 2 𝑜
39 37 38 ax-mp 2 𝑜 2 𝑜
40 36 39 mpbir 2 𝑜
41 40 a1i I V 2 𝑜
42 7 11 12 30 35 41 mapfien2 I V x Base R I | finSupp 0 R x x 2 𝑜 I | finSupp x
43 10 42 eqbrtrrd I V B x 2 𝑜 I | finSupp x
44 11 pwfi2en I V x 2 𝑜 I | finSupp x 𝒫 I Fin
45 entr B x 2 𝑜 I | finSupp x x 2 𝑜 I | finSupp x 𝒫 I Fin B 𝒫 I Fin
46 43 44 45 syl2anc I V B 𝒫 I Fin