Metamath Proof Explorer


Theorem gicabl

Description: Being Abelian is a group invariant.MOVABLE (Contributed by Stefan O'Rear, 8-Jul-2015)

Ref Expression
Assertion gicabl G𝑔HGAbelHAbel

Proof

Step Hyp Ref Expression
1 brgic G𝑔HGGrpIsoH
2 n0 GGrpIsoHxxGGrpIsoH
3 gimghm xGGrpIsoHxGGrpHomH
4 ghmgrp1 xGGrpHomHGGrp
5 3 4 syl xGGrpIsoHGGrp
6 ghmgrp2 xGGrpHomHHGrp
7 3 6 syl xGGrpIsoHHGrp
8 5 7 2thd xGGrpIsoHGGrpHGrp
9 5 grpmndd xGGrpIsoHGMnd
10 7 grpmndd xGGrpIsoHHMnd
11 9 10 2thd xGGrpIsoHGMndHMnd
12 eqid BaseG=BaseG
13 eqid BaseH=BaseH
14 12 13 gimf1o xGGrpIsoHx:BaseG1-1 ontoBaseH
15 f1of1 x:BaseG1-1 ontoBaseHx:BaseG1-1BaseH
16 14 15 syl xGGrpIsoHx:BaseG1-1BaseH
17 16 adantr xGGrpIsoHyBaseGzBaseGx:BaseG1-1BaseH
18 5 adantr xGGrpIsoHyBaseGzBaseGGGrp
19 simprl xGGrpIsoHyBaseGzBaseGyBaseG
20 simprr xGGrpIsoHyBaseGzBaseGzBaseG
21 eqid +G=+G
22 12 21 grpcl GGrpyBaseGzBaseGy+GzBaseG
23 18 19 20 22 syl3anc xGGrpIsoHyBaseGzBaseGy+GzBaseG
24 12 21 grpcl GGrpzBaseGyBaseGz+GyBaseG
25 18 20 19 24 syl3anc xGGrpIsoHyBaseGzBaseGz+GyBaseG
26 f1fveq x:BaseG1-1BaseHy+GzBaseGz+GyBaseGxy+Gz=xz+Gyy+Gz=z+Gy
27 17 23 25 26 syl12anc xGGrpIsoHyBaseGzBaseGxy+Gz=xz+Gyy+Gz=z+Gy
28 3 adantr xGGrpIsoHyBaseGzBaseGxGGrpHomH
29 eqid +H=+H
30 12 21 29 ghmlin xGGrpHomHyBaseGzBaseGxy+Gz=xy+Hxz
31 28 19 20 30 syl3anc xGGrpIsoHyBaseGzBaseGxy+Gz=xy+Hxz
32 12 21 29 ghmlin xGGrpHomHzBaseGyBaseGxz+Gy=xz+Hxy
33 28 20 19 32 syl3anc xGGrpIsoHyBaseGzBaseGxz+Gy=xz+Hxy
34 31 33 eqeq12d xGGrpIsoHyBaseGzBaseGxy+Gz=xz+Gyxy+Hxz=xz+Hxy
35 27 34 bitr3d xGGrpIsoHyBaseGzBaseGy+Gz=z+Gyxy+Hxz=xz+Hxy
36 35 2ralbidva xGGrpIsoHyBaseGzBaseGy+Gz=z+GyyBaseGzBaseGxy+Hxz=xz+Hxy
37 f1ofo x:BaseG1-1 ontoBaseHx:BaseGontoBaseH
38 foima x:BaseGontoBaseHxBaseG=BaseH
39 37 38 syl x:BaseG1-1 ontoBaseHxBaseG=BaseH
40 14 39 syl xGGrpIsoHxBaseG=BaseH
41 40 raleqdv xGGrpIsoHvxBaseGxy+Hv=v+HxyvBaseHxy+Hv=v+Hxy
42 f1ofn x:BaseG1-1 ontoBaseHxFnBaseG
43 14 42 syl xGGrpIsoHxFnBaseG
44 ssid BaseGBaseG
45 oveq2 v=xzxy+Hv=xy+Hxz
46 oveq1 v=xzv+Hxy=xz+Hxy
47 45 46 eqeq12d v=xzxy+Hv=v+Hxyxy+Hxz=xz+Hxy
48 47 ralima xFnBaseGBaseGBaseGvxBaseGxy+Hv=v+HxyzBaseGxy+Hxz=xz+Hxy
49 43 44 48 sylancl xGGrpIsoHvxBaseGxy+Hv=v+HxyzBaseGxy+Hxz=xz+Hxy
50 41 49 bitr3d xGGrpIsoHvBaseHxy+Hv=v+HxyzBaseGxy+Hxz=xz+Hxy
51 50 ralbidv xGGrpIsoHyBaseGvBaseHxy+Hv=v+HxyyBaseGzBaseGxy+Hxz=xz+Hxy
52 36 51 bitr4d xGGrpIsoHyBaseGzBaseGy+Gz=z+GyyBaseGvBaseHxy+Hv=v+Hxy
53 40 raleqdv xGGrpIsoHwxBaseGvBaseHw+Hv=v+HwwBaseHvBaseHw+Hv=v+Hw
54 oveq1 w=xyw+Hv=xy+Hv
55 oveq2 w=xyv+Hw=v+Hxy
56 54 55 eqeq12d w=xyw+Hv=v+Hwxy+Hv=v+Hxy
57 56 ralbidv w=xyvBaseHw+Hv=v+HwvBaseHxy+Hv=v+Hxy
58 57 ralima xFnBaseGBaseGBaseGwxBaseGvBaseHw+Hv=v+HwyBaseGvBaseHxy+Hv=v+Hxy
59 43 44 58 sylancl xGGrpIsoHwxBaseGvBaseHw+Hv=v+HwyBaseGvBaseHxy+Hv=v+Hxy
60 53 59 bitr3d xGGrpIsoHwBaseHvBaseHw+Hv=v+HwyBaseGvBaseHxy+Hv=v+Hxy
61 52 60 bitr4d xGGrpIsoHyBaseGzBaseGy+Gz=z+GywBaseHvBaseHw+Hv=v+Hw
62 11 61 anbi12d xGGrpIsoHGMndyBaseGzBaseGy+Gz=z+GyHMndwBaseHvBaseHw+Hv=v+Hw
63 12 21 iscmn GCMndGMndyBaseGzBaseGy+Gz=z+Gy
64 13 29 iscmn HCMndHMndwBaseHvBaseHw+Hv=v+Hw
65 62 63 64 3bitr4g xGGrpIsoHGCMndHCMnd
66 8 65 anbi12d xGGrpIsoHGGrpGCMndHGrpHCMnd
67 isabl GAbelGGrpGCMnd
68 isabl HAbelHGrpHCMnd
69 66 67 68 3bitr4g xGGrpIsoHGAbelHAbel
70 69 exlimiv xxGGrpIsoHGAbelHAbel
71 2 70 sylbi GGrpIsoHGAbelHAbel
72 1 71 sylbi G𝑔HGAbelHAbel