Description: Being Abelian is a group invariant.MOVABLE (Contributed by Stefan O'Rear, 8-Jul-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | gicabl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brgic | |
|
2 | n0 | |
|
3 | gimghm | |
|
4 | ghmgrp1 | |
|
5 | 3 4 | syl | |
6 | ghmgrp2 | |
|
7 | 3 6 | syl | |
8 | 5 7 | 2thd | |
9 | 5 | grpmndd | |
10 | 7 | grpmndd | |
11 | 9 10 | 2thd | |
12 | eqid | |
|
13 | eqid | |
|
14 | 12 13 | gimf1o | |
15 | f1of1 | |
|
16 | 14 15 | syl | |
17 | 16 | adantr | |
18 | 5 | adantr | |
19 | simprl | |
|
20 | simprr | |
|
21 | eqid | |
|
22 | 12 21 | grpcl | |
23 | 18 19 20 22 | syl3anc | |
24 | 12 21 | grpcl | |
25 | 18 20 19 24 | syl3anc | |
26 | f1fveq | |
|
27 | 17 23 25 26 | syl12anc | |
28 | 3 | adantr | |
29 | eqid | |
|
30 | 12 21 29 | ghmlin | |
31 | 28 19 20 30 | syl3anc | |
32 | 12 21 29 | ghmlin | |
33 | 28 20 19 32 | syl3anc | |
34 | 31 33 | eqeq12d | |
35 | 27 34 | bitr3d | |
36 | 35 | 2ralbidva | |
37 | f1ofo | |
|
38 | foima | |
|
39 | 37 38 | syl | |
40 | 14 39 | syl | |
41 | 40 | raleqdv | |
42 | f1ofn | |
|
43 | 14 42 | syl | |
44 | ssid | |
|
45 | oveq2 | |
|
46 | oveq1 | |
|
47 | 45 46 | eqeq12d | |
48 | 47 | ralima | |
49 | 43 44 48 | sylancl | |
50 | 41 49 | bitr3d | |
51 | 50 | ralbidv | |
52 | 36 51 | bitr4d | |
53 | 40 | raleqdv | |
54 | oveq1 | |
|
55 | oveq2 | |
|
56 | 54 55 | eqeq12d | |
57 | 56 | ralbidv | |
58 | 57 | ralima | |
59 | 43 44 58 | sylancl | |
60 | 53 59 | bitr3d | |
61 | 52 60 | bitr4d | |
62 | 11 61 | anbi12d | |
63 | 12 21 | iscmn | |
64 | 13 29 | iscmn | |
65 | 62 63 64 | 3bitr4g | |
66 | 8 65 | anbi12d | |
67 | isabl | |
|
68 | isabl | |
|
69 | 66 67 68 | 3bitr4g | |
70 | 69 | exlimiv | |
71 | 2 70 | sylbi | |
72 | 1 71 | sylbi | |