Metamath Proof Explorer


Theorem imasgim

Description: A relabeling of the elements of a group induces an isomorphism to the relabeled group.MOVABLE (Contributed by Stefan O'Rear, 8-Jul-2015) (Revised by Mario Carneiro, 11-Aug-2015)

Ref Expression
Hypotheses imasgim.u φ U = F 𝑠 R
imasgim.v φ V = Base R
imasgim.f φ F : V 1-1 onto B
imasgim.r φ R Grp
Assertion imasgim φ F R GrpIso U

Proof

Step Hyp Ref Expression
1 imasgim.u φ U = F 𝑠 R
2 imasgim.v φ V = Base R
3 imasgim.f φ F : V 1-1 onto B
4 imasgim.r φ R Grp
5 eqid Base R = Base R
6 eqid Base U = Base U
7 eqid + R = + R
8 eqid + U = + U
9 eqidd φ + R = + R
10 f1ofo F : V 1-1 onto B F : V onto B
11 3 10 syl φ F : V onto B
12 3 f1ocpbl φ a V b V c V d V F a = F c F b = F d F a + R b = F c + R d
13 eqid 0 R = 0 R
14 1 2 9 11 12 4 13 imasgrp φ U Grp F 0 R = 0 U
15 14 simpld φ U Grp
16 1 2 11 4 imasbas φ B = Base U
17 f1oeq3 B = Base U F : V 1-1 onto B F : V 1-1 onto Base U
18 16 17 syl φ F : V 1-1 onto B F : V 1-1 onto Base U
19 3 18 mpbid φ F : V 1-1 onto Base U
20 2 f1oeq2d φ F : V 1-1 onto Base U F : Base R 1-1 onto Base U
21 19 20 mpbid φ F : Base R 1-1 onto Base U
22 f1of F : Base R 1-1 onto Base U F : Base R Base U
23 21 22 syl φ F : Base R Base U
24 2 eleq2d φ a V a Base R
25 2 eleq2d φ b V b Base R
26 24 25 anbi12d φ a V b V a Base R b Base R
27 11 12 1 2 4 7 8 imasaddval φ a V b V F a + U F b = F a + R b
28 27 eqcomd φ a V b V F a + R b = F a + U F b
29 28 3expib φ a V b V F a + R b = F a + U F b
30 26 29 sylbird φ a Base R b Base R F a + R b = F a + U F b
31 30 imp φ a Base R b Base R F a + R b = F a + U F b
32 5 6 7 8 4 15 23 31 isghmd φ F R GrpHom U
33 5 6 isgim F R GrpIso U F R GrpHom U F : Base R 1-1 onto Base U
34 32 21 33 sylanbrc φ F R GrpIso U