Step |
Hyp |
Ref |
Expression |
1 |
|
imasgim.u |
⊢ ( 𝜑 → 𝑈 = ( 𝐹 “s 𝑅 ) ) |
2 |
|
imasgim.v |
⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) |
3 |
|
imasgim.f |
⊢ ( 𝜑 → 𝐹 : 𝑉 –1-1-onto→ 𝐵 ) |
4 |
|
imasgim.r |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
5 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
6 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
7 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
8 |
|
eqid |
⊢ ( +g ‘ 𝑈 ) = ( +g ‘ 𝑈 ) |
9 |
|
eqidd |
⊢ ( 𝜑 → ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) ) |
10 |
|
f1ofo |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝐵 → 𝐹 : 𝑉 –onto→ 𝐵 ) |
11 |
3 10
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝑉 –onto→ 𝐵 ) |
12 |
3
|
f1ocpbl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑑 ) ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) = ( 𝐹 ‘ ( 𝑐 ( +g ‘ 𝑅 ) 𝑑 ) ) ) ) |
13 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
14 |
1 2 9 11 12 4 13
|
imasgrp |
⊢ ( 𝜑 → ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑈 ) ) ) |
15 |
14
|
simpld |
⊢ ( 𝜑 → 𝑈 ∈ Grp ) |
16 |
1 2 11 4
|
imasbas |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑈 ) ) |
17 |
|
f1oeq3 |
⊢ ( 𝐵 = ( Base ‘ 𝑈 ) → ( 𝐹 : 𝑉 –1-1-onto→ 𝐵 ↔ 𝐹 : 𝑉 –1-1-onto→ ( Base ‘ 𝑈 ) ) ) |
18 |
16 17
|
syl |
⊢ ( 𝜑 → ( 𝐹 : 𝑉 –1-1-onto→ 𝐵 ↔ 𝐹 : 𝑉 –1-1-onto→ ( Base ‘ 𝑈 ) ) ) |
19 |
3 18
|
mpbid |
⊢ ( 𝜑 → 𝐹 : 𝑉 –1-1-onto→ ( Base ‘ 𝑈 ) ) |
20 |
2
|
f1oeq2d |
⊢ ( 𝜑 → ( 𝐹 : 𝑉 –1-1-onto→ ( Base ‘ 𝑈 ) ↔ 𝐹 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑈 ) ) ) |
21 |
19 20
|
mpbid |
⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑈 ) ) |
22 |
|
f1of |
⊢ ( 𝐹 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑈 ) → 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑈 ) ) |
23 |
21 22
|
syl |
⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑈 ) ) |
24 |
2
|
eleq2d |
⊢ ( 𝜑 → ( 𝑎 ∈ 𝑉 ↔ 𝑎 ∈ ( Base ‘ 𝑅 ) ) ) |
25 |
2
|
eleq2d |
⊢ ( 𝜑 → ( 𝑏 ∈ 𝑉 ↔ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) |
26 |
24 25
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ↔ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) ) |
27 |
11 12 1 2 4 7 8
|
imasaddval |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑏 ) ) = ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) ) |
28 |
27
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑏 ) ) ) |
29 |
28
|
3expib |
⊢ ( 𝜑 → ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑏 ) ) ) ) |
30 |
26 29
|
sylbird |
⊢ ( 𝜑 → ( ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑏 ) ) ) ) |
31 |
30
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑏 ) ) ) |
32 |
5 6 7 8 4 15 23 31
|
isghmd |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑅 GrpHom 𝑈 ) ) |
33 |
5 6
|
isgim |
⊢ ( 𝐹 ∈ ( 𝑅 GrpIso 𝑈 ) ↔ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑈 ) ∧ 𝐹 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑈 ) ) ) |
34 |
32 21 33
|
sylanbrc |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑅 GrpIso 𝑈 ) ) |