Metamath Proof Explorer


Theorem isnumbasgrplem1

Description: A set which is equipollent to the base set of a definable Abelian group is the base set of some (relabeled) Abelian group. (Contributed by Stefan O'Rear, 8-Jul-2015)

Ref Expression
Hypothesis isnumbasgrplem1.b 𝐵 = ( Base ‘ 𝑅 )
Assertion isnumbasgrplem1 ( ( 𝑅 ∈ Abel ∧ 𝐶𝐵 ) → 𝐶 ∈ ( Base “ Abel ) )

Proof

Step Hyp Ref Expression
1 isnumbasgrplem1.b 𝐵 = ( Base ‘ 𝑅 )
2 ensymb ( 𝐶𝐵𝐵𝐶 )
3 bren ( 𝐵𝐶 ↔ ∃ 𝑓 𝑓 : 𝐵1-1-onto𝐶 )
4 2 3 bitri ( 𝐶𝐵 ↔ ∃ 𝑓 𝑓 : 𝐵1-1-onto𝐶 )
5 eqidd ( ( 𝑓 : 𝐵1-1-onto𝐶𝑅 ∈ Abel ) → ( 𝑓s 𝑅 ) = ( 𝑓s 𝑅 ) )
6 1 a1i ( ( 𝑓 : 𝐵1-1-onto𝐶𝑅 ∈ Abel ) → 𝐵 = ( Base ‘ 𝑅 ) )
7 f1ofo ( 𝑓 : 𝐵1-1-onto𝐶𝑓 : 𝐵onto𝐶 )
8 7 adantr ( ( 𝑓 : 𝐵1-1-onto𝐶𝑅 ∈ Abel ) → 𝑓 : 𝐵onto𝐶 )
9 simpr ( ( 𝑓 : 𝐵1-1-onto𝐶𝑅 ∈ Abel ) → 𝑅 ∈ Abel )
10 5 6 8 9 imasbas ( ( 𝑓 : 𝐵1-1-onto𝐶𝑅 ∈ Abel ) → 𝐶 = ( Base ‘ ( 𝑓s 𝑅 ) ) )
11 simpl ( ( 𝑓 : 𝐵1-1-onto𝐶𝑅 ∈ Abel ) → 𝑓 : 𝐵1-1-onto𝐶 )
12 ablgrp ( 𝑅 ∈ Abel → 𝑅 ∈ Grp )
13 12 adantl ( ( 𝑓 : 𝐵1-1-onto𝐶𝑅 ∈ Abel ) → 𝑅 ∈ Grp )
14 5 6 11 13 imasgim ( ( 𝑓 : 𝐵1-1-onto𝐶𝑅 ∈ Abel ) → 𝑓 ∈ ( 𝑅 GrpIso ( 𝑓s 𝑅 ) ) )
15 brgici ( 𝑓 ∈ ( 𝑅 GrpIso ( 𝑓s 𝑅 ) ) → 𝑅𝑔 ( 𝑓s 𝑅 ) )
16 gicabl ( 𝑅𝑔 ( 𝑓s 𝑅 ) → ( 𝑅 ∈ Abel ↔ ( 𝑓s 𝑅 ) ∈ Abel ) )
17 14 15 16 3syl ( ( 𝑓 : 𝐵1-1-onto𝐶𝑅 ∈ Abel ) → ( 𝑅 ∈ Abel ↔ ( 𝑓s 𝑅 ) ∈ Abel ) )
18 9 17 mpbid ( ( 𝑓 : 𝐵1-1-onto𝐶𝑅 ∈ Abel ) → ( 𝑓s 𝑅 ) ∈ Abel )
19 basfn Base Fn V
20 ssv Abel ⊆ V
21 fnfvima ( ( Base Fn V ∧ Abel ⊆ V ∧ ( 𝑓s 𝑅 ) ∈ Abel ) → ( Base ‘ ( 𝑓s 𝑅 ) ) ∈ ( Base “ Abel ) )
22 19 20 21 mp3an12 ( ( 𝑓s 𝑅 ) ∈ Abel → ( Base ‘ ( 𝑓s 𝑅 ) ) ∈ ( Base “ Abel ) )
23 18 22 syl ( ( 𝑓 : 𝐵1-1-onto𝐶𝑅 ∈ Abel ) → ( Base ‘ ( 𝑓s 𝑅 ) ) ∈ ( Base “ Abel ) )
24 10 23 eqeltrd ( ( 𝑓 : 𝐵1-1-onto𝐶𝑅 ∈ Abel ) → 𝐶 ∈ ( Base “ Abel ) )
25 24 ex ( 𝑓 : 𝐵1-1-onto𝐶 → ( 𝑅 ∈ Abel → 𝐶 ∈ ( Base “ Abel ) ) )
26 25 exlimiv ( ∃ 𝑓 𝑓 : 𝐵1-1-onto𝐶 → ( 𝑅 ∈ Abel → 𝐶 ∈ ( Base “ Abel ) ) )
27 26 impcom ( ( 𝑅 ∈ Abel ∧ ∃ 𝑓 𝑓 : 𝐵1-1-onto𝐶 ) → 𝐶 ∈ ( Base “ Abel ) )
28 4 27 sylan2b ( ( 𝑅 ∈ Abel ∧ 𝐶𝐵 ) → 𝐶 ∈ ( Base “ Abel ) )