Step |
Hyp |
Ref |
Expression |
1 |
|
isnumbasgrplem1.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
ensymb |
⊢ ( 𝐶 ≈ 𝐵 ↔ 𝐵 ≈ 𝐶 ) |
3 |
|
bren |
⊢ ( 𝐵 ≈ 𝐶 ↔ ∃ 𝑓 𝑓 : 𝐵 –1-1-onto→ 𝐶 ) |
4 |
2 3
|
bitri |
⊢ ( 𝐶 ≈ 𝐵 ↔ ∃ 𝑓 𝑓 : 𝐵 –1-1-onto→ 𝐶 ) |
5 |
|
eqidd |
⊢ ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐶 ∧ 𝑅 ∈ Abel ) → ( 𝑓 “s 𝑅 ) = ( 𝑓 “s 𝑅 ) ) |
6 |
1
|
a1i |
⊢ ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐶 ∧ 𝑅 ∈ Abel ) → 𝐵 = ( Base ‘ 𝑅 ) ) |
7 |
|
f1ofo |
⊢ ( 𝑓 : 𝐵 –1-1-onto→ 𝐶 → 𝑓 : 𝐵 –onto→ 𝐶 ) |
8 |
7
|
adantr |
⊢ ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐶 ∧ 𝑅 ∈ Abel ) → 𝑓 : 𝐵 –onto→ 𝐶 ) |
9 |
|
simpr |
⊢ ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐶 ∧ 𝑅 ∈ Abel ) → 𝑅 ∈ Abel ) |
10 |
5 6 8 9
|
imasbas |
⊢ ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐶 ∧ 𝑅 ∈ Abel ) → 𝐶 = ( Base ‘ ( 𝑓 “s 𝑅 ) ) ) |
11 |
|
simpl |
⊢ ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐶 ∧ 𝑅 ∈ Abel ) → 𝑓 : 𝐵 –1-1-onto→ 𝐶 ) |
12 |
|
ablgrp |
⊢ ( 𝑅 ∈ Abel → 𝑅 ∈ Grp ) |
13 |
12
|
adantl |
⊢ ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐶 ∧ 𝑅 ∈ Abel ) → 𝑅 ∈ Grp ) |
14 |
5 6 11 13
|
imasgim |
⊢ ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐶 ∧ 𝑅 ∈ Abel ) → 𝑓 ∈ ( 𝑅 GrpIso ( 𝑓 “s 𝑅 ) ) ) |
15 |
|
brgici |
⊢ ( 𝑓 ∈ ( 𝑅 GrpIso ( 𝑓 “s 𝑅 ) ) → 𝑅 ≃𝑔 ( 𝑓 “s 𝑅 ) ) |
16 |
|
gicabl |
⊢ ( 𝑅 ≃𝑔 ( 𝑓 “s 𝑅 ) → ( 𝑅 ∈ Abel ↔ ( 𝑓 “s 𝑅 ) ∈ Abel ) ) |
17 |
14 15 16
|
3syl |
⊢ ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐶 ∧ 𝑅 ∈ Abel ) → ( 𝑅 ∈ Abel ↔ ( 𝑓 “s 𝑅 ) ∈ Abel ) ) |
18 |
9 17
|
mpbid |
⊢ ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐶 ∧ 𝑅 ∈ Abel ) → ( 𝑓 “s 𝑅 ) ∈ Abel ) |
19 |
|
basfn |
⊢ Base Fn V |
20 |
|
ssv |
⊢ Abel ⊆ V |
21 |
|
fnfvima |
⊢ ( ( Base Fn V ∧ Abel ⊆ V ∧ ( 𝑓 “s 𝑅 ) ∈ Abel ) → ( Base ‘ ( 𝑓 “s 𝑅 ) ) ∈ ( Base “ Abel ) ) |
22 |
19 20 21
|
mp3an12 |
⊢ ( ( 𝑓 “s 𝑅 ) ∈ Abel → ( Base ‘ ( 𝑓 “s 𝑅 ) ) ∈ ( Base “ Abel ) ) |
23 |
18 22
|
syl |
⊢ ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐶 ∧ 𝑅 ∈ Abel ) → ( Base ‘ ( 𝑓 “s 𝑅 ) ) ∈ ( Base “ Abel ) ) |
24 |
10 23
|
eqeltrd |
⊢ ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐶 ∧ 𝑅 ∈ Abel ) → 𝐶 ∈ ( Base “ Abel ) ) |
25 |
24
|
ex |
⊢ ( 𝑓 : 𝐵 –1-1-onto→ 𝐶 → ( 𝑅 ∈ Abel → 𝐶 ∈ ( Base “ Abel ) ) ) |
26 |
25
|
exlimiv |
⊢ ( ∃ 𝑓 𝑓 : 𝐵 –1-1-onto→ 𝐶 → ( 𝑅 ∈ Abel → 𝐶 ∈ ( Base “ Abel ) ) ) |
27 |
26
|
impcom |
⊢ ( ( 𝑅 ∈ Abel ∧ ∃ 𝑓 𝑓 : 𝐵 –1-1-onto→ 𝐶 ) → 𝐶 ∈ ( Base “ Abel ) ) |
28 |
4 27
|
sylan2b |
⊢ ( ( 𝑅 ∈ Abel ∧ 𝐶 ≈ 𝐵 ) → 𝐶 ∈ ( Base “ Abel ) ) |