Step |
Hyp |
Ref |
Expression |
1 |
|
brgic |
⊢ ( 𝐺 ≃𝑔 𝐻 ↔ ( 𝐺 GrpIso 𝐻 ) ≠ ∅ ) |
2 |
|
n0 |
⊢ ( ( 𝐺 GrpIso 𝐻 ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) ) |
3 |
|
gimghm |
⊢ ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) → 𝑥 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
4 |
|
ghmgrp1 |
⊢ ( 𝑥 ∈ ( 𝐺 GrpHom 𝐻 ) → 𝐺 ∈ Grp ) |
5 |
3 4
|
syl |
⊢ ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) → 𝐺 ∈ Grp ) |
6 |
|
ghmgrp2 |
⊢ ( 𝑥 ∈ ( 𝐺 GrpHom 𝐻 ) → 𝐻 ∈ Grp ) |
7 |
3 6
|
syl |
⊢ ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) → 𝐻 ∈ Grp ) |
8 |
5 7
|
2thd |
⊢ ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) → ( 𝐺 ∈ Grp ↔ 𝐻 ∈ Grp ) ) |
9 |
5
|
grpmndd |
⊢ ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) → 𝐺 ∈ Mnd ) |
10 |
7
|
grpmndd |
⊢ ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) → 𝐻 ∈ Mnd ) |
11 |
9 10
|
2thd |
⊢ ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) → ( 𝐺 ∈ Mnd ↔ 𝐻 ∈ Mnd ) ) |
12 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
13 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
14 |
12 13
|
gimf1o |
⊢ ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) → 𝑥 : ( Base ‘ 𝐺 ) –1-1-onto→ ( Base ‘ 𝐻 ) ) |
15 |
|
f1of1 |
⊢ ( 𝑥 : ( Base ‘ 𝐺 ) –1-1-onto→ ( Base ‘ 𝐻 ) → 𝑥 : ( Base ‘ 𝐺 ) –1-1→ ( Base ‘ 𝐻 ) ) |
16 |
14 15
|
syl |
⊢ ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) → 𝑥 : ( Base ‘ 𝐺 ) –1-1→ ( Base ‘ 𝐻 ) ) |
17 |
16
|
adantr |
⊢ ( ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → 𝑥 : ( Base ‘ 𝐺 ) –1-1→ ( Base ‘ 𝐻 ) ) |
18 |
5
|
adantr |
⊢ ( ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → 𝐺 ∈ Grp ) |
19 |
|
simprl |
⊢ ( ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐺 ) ) |
20 |
|
simprr |
⊢ ( ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → 𝑧 ∈ ( Base ‘ 𝐺 ) ) |
21 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
22 |
12 21
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ ( Base ‘ 𝐺 ) ) |
23 |
18 19 20 22
|
syl3anc |
⊢ ( ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ ( Base ‘ 𝐺 ) ) |
24 |
12 21
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) |
25 |
18 20 19 24
|
syl3anc |
⊢ ( ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) |
26 |
|
f1fveq |
⊢ ( ( 𝑥 : ( Base ‘ 𝐺 ) –1-1→ ( Base ‘ 𝐻 ) ∧ ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ ( Base ‘ 𝐺 ) ∧ ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑥 ‘ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) = ( 𝑥 ‘ ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) ) ↔ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
27 |
17 23 25 26
|
syl12anc |
⊢ ( ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑥 ‘ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) = ( 𝑥 ‘ ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) ) ↔ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
28 |
3
|
adantr |
⊢ ( ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → 𝑥 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
29 |
|
eqid |
⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) |
30 |
12 21 29
|
ghmlin |
⊢ ( ( 𝑥 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑥 ‘ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) = ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑧 ) ) ) |
31 |
28 19 20 30
|
syl3anc |
⊢ ( ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑥 ‘ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) = ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑧 ) ) ) |
32 |
12 21 29
|
ghmlin |
⊢ ( ( 𝑥 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑥 ‘ ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) ) = ( ( 𝑥 ‘ 𝑧 ) ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑦 ) ) ) |
33 |
28 20 19 32
|
syl3anc |
⊢ ( ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑥 ‘ ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) ) = ( ( 𝑥 ‘ 𝑧 ) ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑦 ) ) ) |
34 |
31 33
|
eqeq12d |
⊢ ( ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑥 ‘ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) = ( 𝑥 ‘ ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) ) ↔ ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑧 ) ) = ( ( 𝑥 ‘ 𝑧 ) ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑦 ) ) ) ) |
35 |
27 34
|
bitr3d |
⊢ ( ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) ↔ ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑧 ) ) = ( ( 𝑥 ‘ 𝑧 ) ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑦 ) ) ) ) |
36 |
35
|
2ralbidva |
⊢ ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∀ 𝑧 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∀ 𝑧 ∈ ( Base ‘ 𝐺 ) ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑧 ) ) = ( ( 𝑥 ‘ 𝑧 ) ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑦 ) ) ) ) |
37 |
|
f1ofo |
⊢ ( 𝑥 : ( Base ‘ 𝐺 ) –1-1-onto→ ( Base ‘ 𝐻 ) → 𝑥 : ( Base ‘ 𝐺 ) –onto→ ( Base ‘ 𝐻 ) ) |
38 |
|
foima |
⊢ ( 𝑥 : ( Base ‘ 𝐺 ) –onto→ ( Base ‘ 𝐻 ) → ( 𝑥 “ ( Base ‘ 𝐺 ) ) = ( Base ‘ 𝐻 ) ) |
39 |
37 38
|
syl |
⊢ ( 𝑥 : ( Base ‘ 𝐺 ) –1-1-onto→ ( Base ‘ 𝐻 ) → ( 𝑥 “ ( Base ‘ 𝐺 ) ) = ( Base ‘ 𝐻 ) ) |
40 |
14 39
|
syl |
⊢ ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) → ( 𝑥 “ ( Base ‘ 𝐺 ) ) = ( Base ‘ 𝐻 ) ) |
41 |
40
|
raleqdv |
⊢ ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) → ( ∀ 𝑣 ∈ ( 𝑥 “ ( Base ‘ 𝐺 ) ) ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ 𝐻 ) 𝑣 ) = ( 𝑣 ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑦 ) ) ↔ ∀ 𝑣 ∈ ( Base ‘ 𝐻 ) ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ 𝐻 ) 𝑣 ) = ( 𝑣 ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑦 ) ) ) ) |
42 |
|
f1ofn |
⊢ ( 𝑥 : ( Base ‘ 𝐺 ) –1-1-onto→ ( Base ‘ 𝐻 ) → 𝑥 Fn ( Base ‘ 𝐺 ) ) |
43 |
14 42
|
syl |
⊢ ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) → 𝑥 Fn ( Base ‘ 𝐺 ) ) |
44 |
|
ssid |
⊢ ( Base ‘ 𝐺 ) ⊆ ( Base ‘ 𝐺 ) |
45 |
|
oveq2 |
⊢ ( 𝑣 = ( 𝑥 ‘ 𝑧 ) → ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ 𝐻 ) 𝑣 ) = ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑧 ) ) ) |
46 |
|
oveq1 |
⊢ ( 𝑣 = ( 𝑥 ‘ 𝑧 ) → ( 𝑣 ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑦 ) ) = ( ( 𝑥 ‘ 𝑧 ) ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑦 ) ) ) |
47 |
45 46
|
eqeq12d |
⊢ ( 𝑣 = ( 𝑥 ‘ 𝑧 ) → ( ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ 𝐻 ) 𝑣 ) = ( 𝑣 ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑦 ) ) ↔ ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑧 ) ) = ( ( 𝑥 ‘ 𝑧 ) ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑦 ) ) ) ) |
48 |
47
|
ralima |
⊢ ( ( 𝑥 Fn ( Base ‘ 𝐺 ) ∧ ( Base ‘ 𝐺 ) ⊆ ( Base ‘ 𝐺 ) ) → ( ∀ 𝑣 ∈ ( 𝑥 “ ( Base ‘ 𝐺 ) ) ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ 𝐻 ) 𝑣 ) = ( 𝑣 ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑦 ) ) ↔ ∀ 𝑧 ∈ ( Base ‘ 𝐺 ) ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑧 ) ) = ( ( 𝑥 ‘ 𝑧 ) ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑦 ) ) ) ) |
49 |
43 44 48
|
sylancl |
⊢ ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) → ( ∀ 𝑣 ∈ ( 𝑥 “ ( Base ‘ 𝐺 ) ) ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ 𝐻 ) 𝑣 ) = ( 𝑣 ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑦 ) ) ↔ ∀ 𝑧 ∈ ( Base ‘ 𝐺 ) ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑧 ) ) = ( ( 𝑥 ‘ 𝑧 ) ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑦 ) ) ) ) |
50 |
41 49
|
bitr3d |
⊢ ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) → ( ∀ 𝑣 ∈ ( Base ‘ 𝐻 ) ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ 𝐻 ) 𝑣 ) = ( 𝑣 ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑦 ) ) ↔ ∀ 𝑧 ∈ ( Base ‘ 𝐺 ) ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑧 ) ) = ( ( 𝑥 ‘ 𝑧 ) ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑦 ) ) ) ) |
51 |
50
|
ralbidv |
⊢ ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∀ 𝑣 ∈ ( Base ‘ 𝐻 ) ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ 𝐻 ) 𝑣 ) = ( 𝑣 ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∀ 𝑧 ∈ ( Base ‘ 𝐺 ) ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑧 ) ) = ( ( 𝑥 ‘ 𝑧 ) ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑦 ) ) ) ) |
52 |
36 51
|
bitr4d |
⊢ ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∀ 𝑧 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∀ 𝑣 ∈ ( Base ‘ 𝐻 ) ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ 𝐻 ) 𝑣 ) = ( 𝑣 ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑦 ) ) ) ) |
53 |
40
|
raleqdv |
⊢ ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) → ( ∀ 𝑤 ∈ ( 𝑥 “ ( Base ‘ 𝐺 ) ) ∀ 𝑣 ∈ ( Base ‘ 𝐻 ) ( 𝑤 ( +g ‘ 𝐻 ) 𝑣 ) = ( 𝑣 ( +g ‘ 𝐻 ) 𝑤 ) ↔ ∀ 𝑤 ∈ ( Base ‘ 𝐻 ) ∀ 𝑣 ∈ ( Base ‘ 𝐻 ) ( 𝑤 ( +g ‘ 𝐻 ) 𝑣 ) = ( 𝑣 ( +g ‘ 𝐻 ) 𝑤 ) ) ) |
54 |
|
oveq1 |
⊢ ( 𝑤 = ( 𝑥 ‘ 𝑦 ) → ( 𝑤 ( +g ‘ 𝐻 ) 𝑣 ) = ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ 𝐻 ) 𝑣 ) ) |
55 |
|
oveq2 |
⊢ ( 𝑤 = ( 𝑥 ‘ 𝑦 ) → ( 𝑣 ( +g ‘ 𝐻 ) 𝑤 ) = ( 𝑣 ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑦 ) ) ) |
56 |
54 55
|
eqeq12d |
⊢ ( 𝑤 = ( 𝑥 ‘ 𝑦 ) → ( ( 𝑤 ( +g ‘ 𝐻 ) 𝑣 ) = ( 𝑣 ( +g ‘ 𝐻 ) 𝑤 ) ↔ ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ 𝐻 ) 𝑣 ) = ( 𝑣 ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑦 ) ) ) ) |
57 |
56
|
ralbidv |
⊢ ( 𝑤 = ( 𝑥 ‘ 𝑦 ) → ( ∀ 𝑣 ∈ ( Base ‘ 𝐻 ) ( 𝑤 ( +g ‘ 𝐻 ) 𝑣 ) = ( 𝑣 ( +g ‘ 𝐻 ) 𝑤 ) ↔ ∀ 𝑣 ∈ ( Base ‘ 𝐻 ) ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ 𝐻 ) 𝑣 ) = ( 𝑣 ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑦 ) ) ) ) |
58 |
57
|
ralima |
⊢ ( ( 𝑥 Fn ( Base ‘ 𝐺 ) ∧ ( Base ‘ 𝐺 ) ⊆ ( Base ‘ 𝐺 ) ) → ( ∀ 𝑤 ∈ ( 𝑥 “ ( Base ‘ 𝐺 ) ) ∀ 𝑣 ∈ ( Base ‘ 𝐻 ) ( 𝑤 ( +g ‘ 𝐻 ) 𝑣 ) = ( 𝑣 ( +g ‘ 𝐻 ) 𝑤 ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∀ 𝑣 ∈ ( Base ‘ 𝐻 ) ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ 𝐻 ) 𝑣 ) = ( 𝑣 ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑦 ) ) ) ) |
59 |
43 44 58
|
sylancl |
⊢ ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) → ( ∀ 𝑤 ∈ ( 𝑥 “ ( Base ‘ 𝐺 ) ) ∀ 𝑣 ∈ ( Base ‘ 𝐻 ) ( 𝑤 ( +g ‘ 𝐻 ) 𝑣 ) = ( 𝑣 ( +g ‘ 𝐻 ) 𝑤 ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∀ 𝑣 ∈ ( Base ‘ 𝐻 ) ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ 𝐻 ) 𝑣 ) = ( 𝑣 ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑦 ) ) ) ) |
60 |
53 59
|
bitr3d |
⊢ ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) → ( ∀ 𝑤 ∈ ( Base ‘ 𝐻 ) ∀ 𝑣 ∈ ( Base ‘ 𝐻 ) ( 𝑤 ( +g ‘ 𝐻 ) 𝑣 ) = ( 𝑣 ( +g ‘ 𝐻 ) 𝑤 ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∀ 𝑣 ∈ ( Base ‘ 𝐻 ) ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ 𝐻 ) 𝑣 ) = ( 𝑣 ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑦 ) ) ) ) |
61 |
52 60
|
bitr4d |
⊢ ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∀ 𝑧 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) ↔ ∀ 𝑤 ∈ ( Base ‘ 𝐻 ) ∀ 𝑣 ∈ ( Base ‘ 𝐻 ) ( 𝑤 ( +g ‘ 𝐻 ) 𝑣 ) = ( 𝑣 ( +g ‘ 𝐻 ) 𝑤 ) ) ) |
62 |
11 61
|
anbi12d |
⊢ ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) → ( ( 𝐺 ∈ Mnd ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∀ 𝑧 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) ) ↔ ( 𝐻 ∈ Mnd ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐻 ) ∀ 𝑣 ∈ ( Base ‘ 𝐻 ) ( 𝑤 ( +g ‘ 𝐻 ) 𝑣 ) = ( 𝑣 ( +g ‘ 𝐻 ) 𝑤 ) ) ) ) |
63 |
12 21
|
iscmn |
⊢ ( 𝐺 ∈ CMnd ↔ ( 𝐺 ∈ Mnd ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∀ 𝑧 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
64 |
13 29
|
iscmn |
⊢ ( 𝐻 ∈ CMnd ↔ ( 𝐻 ∈ Mnd ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐻 ) ∀ 𝑣 ∈ ( Base ‘ 𝐻 ) ( 𝑤 ( +g ‘ 𝐻 ) 𝑣 ) = ( 𝑣 ( +g ‘ 𝐻 ) 𝑤 ) ) ) |
65 |
62 63 64
|
3bitr4g |
⊢ ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) → ( 𝐺 ∈ CMnd ↔ 𝐻 ∈ CMnd ) ) |
66 |
8 65
|
anbi12d |
⊢ ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) → ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd ) ↔ ( 𝐻 ∈ Grp ∧ 𝐻 ∈ CMnd ) ) ) |
67 |
|
isabl |
⊢ ( 𝐺 ∈ Abel ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd ) ) |
68 |
|
isabl |
⊢ ( 𝐻 ∈ Abel ↔ ( 𝐻 ∈ Grp ∧ 𝐻 ∈ CMnd ) ) |
69 |
66 67 68
|
3bitr4g |
⊢ ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) → ( 𝐺 ∈ Abel ↔ 𝐻 ∈ Abel ) ) |
70 |
69
|
exlimiv |
⊢ ( ∃ 𝑥 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) → ( 𝐺 ∈ Abel ↔ 𝐻 ∈ Abel ) ) |
71 |
2 70
|
sylbi |
⊢ ( ( 𝐺 GrpIso 𝐻 ) ≠ ∅ → ( 𝐺 ∈ Abel ↔ 𝐻 ∈ Abel ) ) |
72 |
1 71
|
sylbi |
⊢ ( 𝐺 ≃𝑔 𝐻 → ( 𝐺 ∈ Abel ↔ 𝐻 ∈ Abel ) ) |