| Step |
Hyp |
Ref |
Expression |
| 1 |
|
brgic |
⊢ ( 𝐺 ≃𝑔 𝐻 ↔ ( 𝐺 GrpIso 𝐻 ) ≠ ∅ ) |
| 2 |
|
n0 |
⊢ ( ( 𝐺 GrpIso 𝐻 ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) ) |
| 3 |
|
gimghm |
⊢ ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) → 𝑥 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
| 4 |
|
ghmgrp1 |
⊢ ( 𝑥 ∈ ( 𝐺 GrpHom 𝐻 ) → 𝐺 ∈ Grp ) |
| 5 |
3 4
|
syl |
⊢ ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) → 𝐺 ∈ Grp ) |
| 6 |
|
ghmgrp2 |
⊢ ( 𝑥 ∈ ( 𝐺 GrpHom 𝐻 ) → 𝐻 ∈ Grp ) |
| 7 |
3 6
|
syl |
⊢ ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) → 𝐻 ∈ Grp ) |
| 8 |
5 7
|
2thd |
⊢ ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) → ( 𝐺 ∈ Grp ↔ 𝐻 ∈ Grp ) ) |
| 9 |
5
|
grpmndd |
⊢ ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) → 𝐺 ∈ Mnd ) |
| 10 |
7
|
grpmndd |
⊢ ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) → 𝐻 ∈ Mnd ) |
| 11 |
9 10
|
2thd |
⊢ ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) → ( 𝐺 ∈ Mnd ↔ 𝐻 ∈ Mnd ) ) |
| 12 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 13 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
| 14 |
12 13
|
gimf1o |
⊢ ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) → 𝑥 : ( Base ‘ 𝐺 ) –1-1-onto→ ( Base ‘ 𝐻 ) ) |
| 15 |
|
f1of1 |
⊢ ( 𝑥 : ( Base ‘ 𝐺 ) –1-1-onto→ ( Base ‘ 𝐻 ) → 𝑥 : ( Base ‘ 𝐺 ) –1-1→ ( Base ‘ 𝐻 ) ) |
| 16 |
14 15
|
syl |
⊢ ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) → 𝑥 : ( Base ‘ 𝐺 ) –1-1→ ( Base ‘ 𝐻 ) ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → 𝑥 : ( Base ‘ 𝐺 ) –1-1→ ( Base ‘ 𝐻 ) ) |
| 18 |
5
|
adantr |
⊢ ( ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → 𝐺 ∈ Grp ) |
| 19 |
|
simprl |
⊢ ( ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐺 ) ) |
| 20 |
|
simprr |
⊢ ( ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → 𝑧 ∈ ( Base ‘ 𝐺 ) ) |
| 21 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 22 |
12 21
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ ( Base ‘ 𝐺 ) ) |
| 23 |
18 19 20 22
|
syl3anc |
⊢ ( ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ ( Base ‘ 𝐺 ) ) |
| 24 |
12 21
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) |
| 25 |
18 20 19 24
|
syl3anc |
⊢ ( ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) |
| 26 |
|
f1fveq |
⊢ ( ( 𝑥 : ( Base ‘ 𝐺 ) –1-1→ ( Base ‘ 𝐻 ) ∧ ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ ( Base ‘ 𝐺 ) ∧ ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑥 ‘ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) = ( 𝑥 ‘ ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) ) ↔ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
| 27 |
17 23 25 26
|
syl12anc |
⊢ ( ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑥 ‘ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) = ( 𝑥 ‘ ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) ) ↔ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
| 28 |
3
|
adantr |
⊢ ( ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → 𝑥 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
| 29 |
|
eqid |
⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) |
| 30 |
12 21 29
|
ghmlin |
⊢ ( ( 𝑥 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑥 ‘ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) = ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑧 ) ) ) |
| 31 |
28 19 20 30
|
syl3anc |
⊢ ( ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑥 ‘ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) = ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑧 ) ) ) |
| 32 |
12 21 29
|
ghmlin |
⊢ ( ( 𝑥 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑥 ‘ ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) ) = ( ( 𝑥 ‘ 𝑧 ) ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑦 ) ) ) |
| 33 |
28 20 19 32
|
syl3anc |
⊢ ( ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑥 ‘ ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) ) = ( ( 𝑥 ‘ 𝑧 ) ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑦 ) ) ) |
| 34 |
31 33
|
eqeq12d |
⊢ ( ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑥 ‘ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) = ( 𝑥 ‘ ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) ) ↔ ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑧 ) ) = ( ( 𝑥 ‘ 𝑧 ) ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑦 ) ) ) ) |
| 35 |
27 34
|
bitr3d |
⊢ ( ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) ↔ ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑧 ) ) = ( ( 𝑥 ‘ 𝑧 ) ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑦 ) ) ) ) |
| 36 |
35
|
2ralbidva |
⊢ ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∀ 𝑧 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∀ 𝑧 ∈ ( Base ‘ 𝐺 ) ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑧 ) ) = ( ( 𝑥 ‘ 𝑧 ) ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑦 ) ) ) ) |
| 37 |
|
f1ofo |
⊢ ( 𝑥 : ( Base ‘ 𝐺 ) –1-1-onto→ ( Base ‘ 𝐻 ) → 𝑥 : ( Base ‘ 𝐺 ) –onto→ ( Base ‘ 𝐻 ) ) |
| 38 |
|
foima |
⊢ ( 𝑥 : ( Base ‘ 𝐺 ) –onto→ ( Base ‘ 𝐻 ) → ( 𝑥 “ ( Base ‘ 𝐺 ) ) = ( Base ‘ 𝐻 ) ) |
| 39 |
37 38
|
syl |
⊢ ( 𝑥 : ( Base ‘ 𝐺 ) –1-1-onto→ ( Base ‘ 𝐻 ) → ( 𝑥 “ ( Base ‘ 𝐺 ) ) = ( Base ‘ 𝐻 ) ) |
| 40 |
14 39
|
syl |
⊢ ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) → ( 𝑥 “ ( Base ‘ 𝐺 ) ) = ( Base ‘ 𝐻 ) ) |
| 41 |
40
|
raleqdv |
⊢ ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) → ( ∀ 𝑣 ∈ ( 𝑥 “ ( Base ‘ 𝐺 ) ) ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ 𝐻 ) 𝑣 ) = ( 𝑣 ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑦 ) ) ↔ ∀ 𝑣 ∈ ( Base ‘ 𝐻 ) ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ 𝐻 ) 𝑣 ) = ( 𝑣 ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑦 ) ) ) ) |
| 42 |
|
f1ofn |
⊢ ( 𝑥 : ( Base ‘ 𝐺 ) –1-1-onto→ ( Base ‘ 𝐻 ) → 𝑥 Fn ( Base ‘ 𝐺 ) ) |
| 43 |
14 42
|
syl |
⊢ ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) → 𝑥 Fn ( Base ‘ 𝐺 ) ) |
| 44 |
|
ssid |
⊢ ( Base ‘ 𝐺 ) ⊆ ( Base ‘ 𝐺 ) |
| 45 |
|
oveq2 |
⊢ ( 𝑣 = ( 𝑥 ‘ 𝑧 ) → ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ 𝐻 ) 𝑣 ) = ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑧 ) ) ) |
| 46 |
|
oveq1 |
⊢ ( 𝑣 = ( 𝑥 ‘ 𝑧 ) → ( 𝑣 ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑦 ) ) = ( ( 𝑥 ‘ 𝑧 ) ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑦 ) ) ) |
| 47 |
45 46
|
eqeq12d |
⊢ ( 𝑣 = ( 𝑥 ‘ 𝑧 ) → ( ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ 𝐻 ) 𝑣 ) = ( 𝑣 ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑦 ) ) ↔ ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑧 ) ) = ( ( 𝑥 ‘ 𝑧 ) ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑦 ) ) ) ) |
| 48 |
47
|
ralima |
⊢ ( ( 𝑥 Fn ( Base ‘ 𝐺 ) ∧ ( Base ‘ 𝐺 ) ⊆ ( Base ‘ 𝐺 ) ) → ( ∀ 𝑣 ∈ ( 𝑥 “ ( Base ‘ 𝐺 ) ) ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ 𝐻 ) 𝑣 ) = ( 𝑣 ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑦 ) ) ↔ ∀ 𝑧 ∈ ( Base ‘ 𝐺 ) ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑧 ) ) = ( ( 𝑥 ‘ 𝑧 ) ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑦 ) ) ) ) |
| 49 |
43 44 48
|
sylancl |
⊢ ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) → ( ∀ 𝑣 ∈ ( 𝑥 “ ( Base ‘ 𝐺 ) ) ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ 𝐻 ) 𝑣 ) = ( 𝑣 ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑦 ) ) ↔ ∀ 𝑧 ∈ ( Base ‘ 𝐺 ) ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑧 ) ) = ( ( 𝑥 ‘ 𝑧 ) ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑦 ) ) ) ) |
| 50 |
41 49
|
bitr3d |
⊢ ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) → ( ∀ 𝑣 ∈ ( Base ‘ 𝐻 ) ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ 𝐻 ) 𝑣 ) = ( 𝑣 ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑦 ) ) ↔ ∀ 𝑧 ∈ ( Base ‘ 𝐺 ) ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑧 ) ) = ( ( 𝑥 ‘ 𝑧 ) ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑦 ) ) ) ) |
| 51 |
50
|
ralbidv |
⊢ ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∀ 𝑣 ∈ ( Base ‘ 𝐻 ) ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ 𝐻 ) 𝑣 ) = ( 𝑣 ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∀ 𝑧 ∈ ( Base ‘ 𝐺 ) ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑧 ) ) = ( ( 𝑥 ‘ 𝑧 ) ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑦 ) ) ) ) |
| 52 |
36 51
|
bitr4d |
⊢ ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∀ 𝑧 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∀ 𝑣 ∈ ( Base ‘ 𝐻 ) ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ 𝐻 ) 𝑣 ) = ( 𝑣 ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑦 ) ) ) ) |
| 53 |
40
|
raleqdv |
⊢ ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) → ( ∀ 𝑤 ∈ ( 𝑥 “ ( Base ‘ 𝐺 ) ) ∀ 𝑣 ∈ ( Base ‘ 𝐻 ) ( 𝑤 ( +g ‘ 𝐻 ) 𝑣 ) = ( 𝑣 ( +g ‘ 𝐻 ) 𝑤 ) ↔ ∀ 𝑤 ∈ ( Base ‘ 𝐻 ) ∀ 𝑣 ∈ ( Base ‘ 𝐻 ) ( 𝑤 ( +g ‘ 𝐻 ) 𝑣 ) = ( 𝑣 ( +g ‘ 𝐻 ) 𝑤 ) ) ) |
| 54 |
|
oveq1 |
⊢ ( 𝑤 = ( 𝑥 ‘ 𝑦 ) → ( 𝑤 ( +g ‘ 𝐻 ) 𝑣 ) = ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ 𝐻 ) 𝑣 ) ) |
| 55 |
|
oveq2 |
⊢ ( 𝑤 = ( 𝑥 ‘ 𝑦 ) → ( 𝑣 ( +g ‘ 𝐻 ) 𝑤 ) = ( 𝑣 ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑦 ) ) ) |
| 56 |
54 55
|
eqeq12d |
⊢ ( 𝑤 = ( 𝑥 ‘ 𝑦 ) → ( ( 𝑤 ( +g ‘ 𝐻 ) 𝑣 ) = ( 𝑣 ( +g ‘ 𝐻 ) 𝑤 ) ↔ ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ 𝐻 ) 𝑣 ) = ( 𝑣 ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑦 ) ) ) ) |
| 57 |
56
|
ralbidv |
⊢ ( 𝑤 = ( 𝑥 ‘ 𝑦 ) → ( ∀ 𝑣 ∈ ( Base ‘ 𝐻 ) ( 𝑤 ( +g ‘ 𝐻 ) 𝑣 ) = ( 𝑣 ( +g ‘ 𝐻 ) 𝑤 ) ↔ ∀ 𝑣 ∈ ( Base ‘ 𝐻 ) ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ 𝐻 ) 𝑣 ) = ( 𝑣 ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑦 ) ) ) ) |
| 58 |
57
|
ralima |
⊢ ( ( 𝑥 Fn ( Base ‘ 𝐺 ) ∧ ( Base ‘ 𝐺 ) ⊆ ( Base ‘ 𝐺 ) ) → ( ∀ 𝑤 ∈ ( 𝑥 “ ( Base ‘ 𝐺 ) ) ∀ 𝑣 ∈ ( Base ‘ 𝐻 ) ( 𝑤 ( +g ‘ 𝐻 ) 𝑣 ) = ( 𝑣 ( +g ‘ 𝐻 ) 𝑤 ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∀ 𝑣 ∈ ( Base ‘ 𝐻 ) ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ 𝐻 ) 𝑣 ) = ( 𝑣 ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑦 ) ) ) ) |
| 59 |
43 44 58
|
sylancl |
⊢ ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) → ( ∀ 𝑤 ∈ ( 𝑥 “ ( Base ‘ 𝐺 ) ) ∀ 𝑣 ∈ ( Base ‘ 𝐻 ) ( 𝑤 ( +g ‘ 𝐻 ) 𝑣 ) = ( 𝑣 ( +g ‘ 𝐻 ) 𝑤 ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∀ 𝑣 ∈ ( Base ‘ 𝐻 ) ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ 𝐻 ) 𝑣 ) = ( 𝑣 ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑦 ) ) ) ) |
| 60 |
53 59
|
bitr3d |
⊢ ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) → ( ∀ 𝑤 ∈ ( Base ‘ 𝐻 ) ∀ 𝑣 ∈ ( Base ‘ 𝐻 ) ( 𝑤 ( +g ‘ 𝐻 ) 𝑣 ) = ( 𝑣 ( +g ‘ 𝐻 ) 𝑤 ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∀ 𝑣 ∈ ( Base ‘ 𝐻 ) ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ 𝐻 ) 𝑣 ) = ( 𝑣 ( +g ‘ 𝐻 ) ( 𝑥 ‘ 𝑦 ) ) ) ) |
| 61 |
52 60
|
bitr4d |
⊢ ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∀ 𝑧 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) ↔ ∀ 𝑤 ∈ ( Base ‘ 𝐻 ) ∀ 𝑣 ∈ ( Base ‘ 𝐻 ) ( 𝑤 ( +g ‘ 𝐻 ) 𝑣 ) = ( 𝑣 ( +g ‘ 𝐻 ) 𝑤 ) ) ) |
| 62 |
11 61
|
anbi12d |
⊢ ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) → ( ( 𝐺 ∈ Mnd ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∀ 𝑧 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) ) ↔ ( 𝐻 ∈ Mnd ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐻 ) ∀ 𝑣 ∈ ( Base ‘ 𝐻 ) ( 𝑤 ( +g ‘ 𝐻 ) 𝑣 ) = ( 𝑣 ( +g ‘ 𝐻 ) 𝑤 ) ) ) ) |
| 63 |
12 21
|
iscmn |
⊢ ( 𝐺 ∈ CMnd ↔ ( 𝐺 ∈ Mnd ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∀ 𝑧 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
| 64 |
13 29
|
iscmn |
⊢ ( 𝐻 ∈ CMnd ↔ ( 𝐻 ∈ Mnd ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐻 ) ∀ 𝑣 ∈ ( Base ‘ 𝐻 ) ( 𝑤 ( +g ‘ 𝐻 ) 𝑣 ) = ( 𝑣 ( +g ‘ 𝐻 ) 𝑤 ) ) ) |
| 65 |
62 63 64
|
3bitr4g |
⊢ ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) → ( 𝐺 ∈ CMnd ↔ 𝐻 ∈ CMnd ) ) |
| 66 |
8 65
|
anbi12d |
⊢ ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) → ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd ) ↔ ( 𝐻 ∈ Grp ∧ 𝐻 ∈ CMnd ) ) ) |
| 67 |
|
isabl |
⊢ ( 𝐺 ∈ Abel ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd ) ) |
| 68 |
|
isabl |
⊢ ( 𝐻 ∈ Abel ↔ ( 𝐻 ∈ Grp ∧ 𝐻 ∈ CMnd ) ) |
| 69 |
66 67 68
|
3bitr4g |
⊢ ( 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) → ( 𝐺 ∈ Abel ↔ 𝐻 ∈ Abel ) ) |
| 70 |
69
|
exlimiv |
⊢ ( ∃ 𝑥 𝑥 ∈ ( 𝐺 GrpIso 𝐻 ) → ( 𝐺 ∈ Abel ↔ 𝐻 ∈ Abel ) ) |
| 71 |
2 70
|
sylbi |
⊢ ( ( 𝐺 GrpIso 𝐻 ) ≠ ∅ → ( 𝐺 ∈ Abel ↔ 𝐻 ∈ Abel ) ) |
| 72 |
1 71
|
sylbi |
⊢ ( 𝐺 ≃𝑔 𝐻 → ( 𝐺 ∈ Abel ↔ 𝐻 ∈ Abel ) ) |