Step |
Hyp |
Ref |
Expression |
1 |
|
isnumbasgrplem1.b |
|- B = ( Base ` R ) |
2 |
|
ensymb |
|- ( C ~~ B <-> B ~~ C ) |
3 |
|
bren |
|- ( B ~~ C <-> E. f f : B -1-1-onto-> C ) |
4 |
2 3
|
bitri |
|- ( C ~~ B <-> E. f f : B -1-1-onto-> C ) |
5 |
|
eqidd |
|- ( ( f : B -1-1-onto-> C /\ R e. Abel ) -> ( f "s R ) = ( f "s R ) ) |
6 |
1
|
a1i |
|- ( ( f : B -1-1-onto-> C /\ R e. Abel ) -> B = ( Base ` R ) ) |
7 |
|
f1ofo |
|- ( f : B -1-1-onto-> C -> f : B -onto-> C ) |
8 |
7
|
adantr |
|- ( ( f : B -1-1-onto-> C /\ R e. Abel ) -> f : B -onto-> C ) |
9 |
|
simpr |
|- ( ( f : B -1-1-onto-> C /\ R e. Abel ) -> R e. Abel ) |
10 |
5 6 8 9
|
imasbas |
|- ( ( f : B -1-1-onto-> C /\ R e. Abel ) -> C = ( Base ` ( f "s R ) ) ) |
11 |
|
simpl |
|- ( ( f : B -1-1-onto-> C /\ R e. Abel ) -> f : B -1-1-onto-> C ) |
12 |
|
ablgrp |
|- ( R e. Abel -> R e. Grp ) |
13 |
12
|
adantl |
|- ( ( f : B -1-1-onto-> C /\ R e. Abel ) -> R e. Grp ) |
14 |
5 6 11 13
|
imasgim |
|- ( ( f : B -1-1-onto-> C /\ R e. Abel ) -> f e. ( R GrpIso ( f "s R ) ) ) |
15 |
|
brgici |
|- ( f e. ( R GrpIso ( f "s R ) ) -> R ~=g ( f "s R ) ) |
16 |
|
gicabl |
|- ( R ~=g ( f "s R ) -> ( R e. Abel <-> ( f "s R ) e. Abel ) ) |
17 |
14 15 16
|
3syl |
|- ( ( f : B -1-1-onto-> C /\ R e. Abel ) -> ( R e. Abel <-> ( f "s R ) e. Abel ) ) |
18 |
9 17
|
mpbid |
|- ( ( f : B -1-1-onto-> C /\ R e. Abel ) -> ( f "s R ) e. Abel ) |
19 |
|
basfn |
|- Base Fn _V |
20 |
|
ssv |
|- Abel C_ _V |
21 |
|
fnfvima |
|- ( ( Base Fn _V /\ Abel C_ _V /\ ( f "s R ) e. Abel ) -> ( Base ` ( f "s R ) ) e. ( Base " Abel ) ) |
22 |
19 20 21
|
mp3an12 |
|- ( ( f "s R ) e. Abel -> ( Base ` ( f "s R ) ) e. ( Base " Abel ) ) |
23 |
18 22
|
syl |
|- ( ( f : B -1-1-onto-> C /\ R e. Abel ) -> ( Base ` ( f "s R ) ) e. ( Base " Abel ) ) |
24 |
10 23
|
eqeltrd |
|- ( ( f : B -1-1-onto-> C /\ R e. Abel ) -> C e. ( Base " Abel ) ) |
25 |
24
|
ex |
|- ( f : B -1-1-onto-> C -> ( R e. Abel -> C e. ( Base " Abel ) ) ) |
26 |
25
|
exlimiv |
|- ( E. f f : B -1-1-onto-> C -> ( R e. Abel -> C e. ( Base " Abel ) ) ) |
27 |
26
|
impcom |
|- ( ( R e. Abel /\ E. f f : B -1-1-onto-> C ) -> C e. ( Base " Abel ) ) |
28 |
4 27
|
sylan2b |
|- ( ( R e. Abel /\ C ~~ B ) -> C e. ( Base " Abel ) ) |