Step |
Hyp |
Ref |
Expression |
1 |
|
imasgim.u |
|- ( ph -> U = ( F "s R ) ) |
2 |
|
imasgim.v |
|- ( ph -> V = ( Base ` R ) ) |
3 |
|
imasgim.f |
|- ( ph -> F : V -1-1-onto-> B ) |
4 |
|
imasgim.r |
|- ( ph -> R e. Grp ) |
5 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
6 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
7 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
8 |
|
eqid |
|- ( +g ` U ) = ( +g ` U ) |
9 |
|
eqidd |
|- ( ph -> ( +g ` R ) = ( +g ` R ) ) |
10 |
|
f1ofo |
|- ( F : V -1-1-onto-> B -> F : V -onto-> B ) |
11 |
3 10
|
syl |
|- ( ph -> F : V -onto-> B ) |
12 |
3
|
f1ocpbl |
|- ( ( ph /\ ( a e. V /\ b e. V ) /\ ( c e. V /\ d e. V ) ) -> ( ( ( F ` a ) = ( F ` c ) /\ ( F ` b ) = ( F ` d ) ) -> ( F ` ( a ( +g ` R ) b ) ) = ( F ` ( c ( +g ` R ) d ) ) ) ) |
13 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
14 |
1 2 9 11 12 4 13
|
imasgrp |
|- ( ph -> ( U e. Grp /\ ( F ` ( 0g ` R ) ) = ( 0g ` U ) ) ) |
15 |
14
|
simpld |
|- ( ph -> U e. Grp ) |
16 |
1 2 11 4
|
imasbas |
|- ( ph -> B = ( Base ` U ) ) |
17 |
|
f1oeq3 |
|- ( B = ( Base ` U ) -> ( F : V -1-1-onto-> B <-> F : V -1-1-onto-> ( Base ` U ) ) ) |
18 |
16 17
|
syl |
|- ( ph -> ( F : V -1-1-onto-> B <-> F : V -1-1-onto-> ( Base ` U ) ) ) |
19 |
3 18
|
mpbid |
|- ( ph -> F : V -1-1-onto-> ( Base ` U ) ) |
20 |
2
|
f1oeq2d |
|- ( ph -> ( F : V -1-1-onto-> ( Base ` U ) <-> F : ( Base ` R ) -1-1-onto-> ( Base ` U ) ) ) |
21 |
19 20
|
mpbid |
|- ( ph -> F : ( Base ` R ) -1-1-onto-> ( Base ` U ) ) |
22 |
|
f1of |
|- ( F : ( Base ` R ) -1-1-onto-> ( Base ` U ) -> F : ( Base ` R ) --> ( Base ` U ) ) |
23 |
21 22
|
syl |
|- ( ph -> F : ( Base ` R ) --> ( Base ` U ) ) |
24 |
2
|
eleq2d |
|- ( ph -> ( a e. V <-> a e. ( Base ` R ) ) ) |
25 |
2
|
eleq2d |
|- ( ph -> ( b e. V <-> b e. ( Base ` R ) ) ) |
26 |
24 25
|
anbi12d |
|- ( ph -> ( ( a e. V /\ b e. V ) <-> ( a e. ( Base ` R ) /\ b e. ( Base ` R ) ) ) ) |
27 |
11 12 1 2 4 7 8
|
imasaddval |
|- ( ( ph /\ a e. V /\ b e. V ) -> ( ( F ` a ) ( +g ` U ) ( F ` b ) ) = ( F ` ( a ( +g ` R ) b ) ) ) |
28 |
27
|
eqcomd |
|- ( ( ph /\ a e. V /\ b e. V ) -> ( F ` ( a ( +g ` R ) b ) ) = ( ( F ` a ) ( +g ` U ) ( F ` b ) ) ) |
29 |
28
|
3expib |
|- ( ph -> ( ( a e. V /\ b e. V ) -> ( F ` ( a ( +g ` R ) b ) ) = ( ( F ` a ) ( +g ` U ) ( F ` b ) ) ) ) |
30 |
26 29
|
sylbird |
|- ( ph -> ( ( a e. ( Base ` R ) /\ b e. ( Base ` R ) ) -> ( F ` ( a ( +g ` R ) b ) ) = ( ( F ` a ) ( +g ` U ) ( F ` b ) ) ) ) |
31 |
30
|
imp |
|- ( ( ph /\ ( a e. ( Base ` R ) /\ b e. ( Base ` R ) ) ) -> ( F ` ( a ( +g ` R ) b ) ) = ( ( F ` a ) ( +g ` U ) ( F ` b ) ) ) |
32 |
5 6 7 8 4 15 23 31
|
isghmd |
|- ( ph -> F e. ( R GrpHom U ) ) |
33 |
5 6
|
isgim |
|- ( F e. ( R GrpIso U ) <-> ( F e. ( R GrpHom U ) /\ F : ( Base ` R ) -1-1-onto-> ( Base ` U ) ) ) |
34 |
32 21 33
|
sylanbrc |
|- ( ph -> F e. ( R GrpIso U ) ) |