Step |
Hyp |
Ref |
Expression |
1 |
|
pwfi2f1o.s |
⊢ 𝑆 = { 𝑦 ∈ ( 2o ↑m 𝐴 ) ∣ 𝑦 finSupp ∅ } |
2 |
|
pwfi2f1o.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝑆 ↦ ( ◡ 𝑥 “ { 1o } ) ) |
3 |
|
eqid |
⊢ ( 𝑥 ∈ ( 2o ↑m 𝐴 ) ↦ ( ◡ 𝑥 “ { 1o } ) ) = ( 𝑥 ∈ ( 2o ↑m 𝐴 ) ↦ ( ◡ 𝑥 “ { 1o } ) ) |
4 |
3
|
pw2f1o2 |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ ( 2o ↑m 𝐴 ) ↦ ( ◡ 𝑥 “ { 1o } ) ) : ( 2o ↑m 𝐴 ) –1-1-onto→ 𝒫 𝐴 ) |
5 |
|
f1of1 |
⊢ ( ( 𝑥 ∈ ( 2o ↑m 𝐴 ) ↦ ( ◡ 𝑥 “ { 1o } ) ) : ( 2o ↑m 𝐴 ) –1-1-onto→ 𝒫 𝐴 → ( 𝑥 ∈ ( 2o ↑m 𝐴 ) ↦ ( ◡ 𝑥 “ { 1o } ) ) : ( 2o ↑m 𝐴 ) –1-1→ 𝒫 𝐴 ) |
6 |
4 5
|
syl |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ ( 2o ↑m 𝐴 ) ↦ ( ◡ 𝑥 “ { 1o } ) ) : ( 2o ↑m 𝐴 ) –1-1→ 𝒫 𝐴 ) |
7 |
|
ssrab2 |
⊢ { 𝑦 ∈ ( 2o ↑m 𝐴 ) ∣ 𝑦 finSupp ∅ } ⊆ ( 2o ↑m 𝐴 ) |
8 |
1 7
|
eqsstri |
⊢ 𝑆 ⊆ ( 2o ↑m 𝐴 ) |
9 |
|
f1ores |
⊢ ( ( ( 𝑥 ∈ ( 2o ↑m 𝐴 ) ↦ ( ◡ 𝑥 “ { 1o } ) ) : ( 2o ↑m 𝐴 ) –1-1→ 𝒫 𝐴 ∧ 𝑆 ⊆ ( 2o ↑m 𝐴 ) ) → ( ( 𝑥 ∈ ( 2o ↑m 𝐴 ) ↦ ( ◡ 𝑥 “ { 1o } ) ) ↾ 𝑆 ) : 𝑆 –1-1-onto→ ( ( 𝑥 ∈ ( 2o ↑m 𝐴 ) ↦ ( ◡ 𝑥 “ { 1o } ) ) “ 𝑆 ) ) |
10 |
6 8 9
|
sylancl |
⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑥 ∈ ( 2o ↑m 𝐴 ) ↦ ( ◡ 𝑥 “ { 1o } ) ) ↾ 𝑆 ) : 𝑆 –1-1-onto→ ( ( 𝑥 ∈ ( 2o ↑m 𝐴 ) ↦ ( ◡ 𝑥 “ { 1o } ) ) “ 𝑆 ) ) |
11 |
|
elmapfun |
⊢ ( 𝑦 ∈ ( 2o ↑m 𝐴 ) → Fun 𝑦 ) |
12 |
|
id |
⊢ ( 𝑦 ∈ ( 2o ↑m 𝐴 ) → 𝑦 ∈ ( 2o ↑m 𝐴 ) ) |
13 |
|
0ex |
⊢ ∅ ∈ V |
14 |
13
|
a1i |
⊢ ( 𝑦 ∈ ( 2o ↑m 𝐴 ) → ∅ ∈ V ) |
15 |
11 12 14
|
3jca |
⊢ ( 𝑦 ∈ ( 2o ↑m 𝐴 ) → ( Fun 𝑦 ∧ 𝑦 ∈ ( 2o ↑m 𝐴 ) ∧ ∅ ∈ V ) ) |
16 |
15
|
adantl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ ( 2o ↑m 𝐴 ) ) → ( Fun 𝑦 ∧ 𝑦 ∈ ( 2o ↑m 𝐴 ) ∧ ∅ ∈ V ) ) |
17 |
|
funisfsupp |
⊢ ( ( Fun 𝑦 ∧ 𝑦 ∈ ( 2o ↑m 𝐴 ) ∧ ∅ ∈ V ) → ( 𝑦 finSupp ∅ ↔ ( 𝑦 supp ∅ ) ∈ Fin ) ) |
18 |
16 17
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ ( 2o ↑m 𝐴 ) ) → ( 𝑦 finSupp ∅ ↔ ( 𝑦 supp ∅ ) ∈ Fin ) ) |
19 |
14
|
anim2i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ ( 2o ↑m 𝐴 ) ) → ( 𝐴 ∈ 𝑉 ∧ ∅ ∈ V ) ) |
20 |
|
elmapi |
⊢ ( 𝑦 ∈ ( 2o ↑m 𝐴 ) → 𝑦 : 𝐴 ⟶ 2o ) |
21 |
20
|
adantl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ ( 2o ↑m 𝐴 ) ) → 𝑦 : 𝐴 ⟶ 2o ) |
22 |
|
frnsuppeq |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∅ ∈ V ) → ( 𝑦 : 𝐴 ⟶ 2o → ( 𝑦 supp ∅ ) = ( ◡ 𝑦 “ ( 2o ∖ { ∅ } ) ) ) ) |
23 |
19 21 22
|
sylc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ ( 2o ↑m 𝐴 ) ) → ( 𝑦 supp ∅ ) = ( ◡ 𝑦 “ ( 2o ∖ { ∅ } ) ) ) |
24 |
|
df-2o |
⊢ 2o = suc 1o |
25 |
|
df-suc |
⊢ suc 1o = ( 1o ∪ { 1o } ) |
26 |
25
|
equncomi |
⊢ suc 1o = ( { 1o } ∪ 1o ) |
27 |
24 26
|
eqtri |
⊢ 2o = ( { 1o } ∪ 1o ) |
28 |
|
df1o2 |
⊢ 1o = { ∅ } |
29 |
28
|
eqcomi |
⊢ { ∅ } = 1o |
30 |
27 29
|
difeq12i |
⊢ ( 2o ∖ { ∅ } ) = ( ( { 1o } ∪ 1o ) ∖ 1o ) |
31 |
|
difun2 |
⊢ ( ( { 1o } ∪ 1o ) ∖ 1o ) = ( { 1o } ∖ 1o ) |
32 |
|
incom |
⊢ ( { 1o } ∩ 1o ) = ( 1o ∩ { 1o } ) |
33 |
|
1on |
⊢ 1o ∈ On |
34 |
33
|
onordi |
⊢ Ord 1o |
35 |
|
orddisj |
⊢ ( Ord 1o → ( 1o ∩ { 1o } ) = ∅ ) |
36 |
34 35
|
ax-mp |
⊢ ( 1o ∩ { 1o } ) = ∅ |
37 |
32 36
|
eqtri |
⊢ ( { 1o } ∩ 1o ) = ∅ |
38 |
|
disj3 |
⊢ ( ( { 1o } ∩ 1o ) = ∅ ↔ { 1o } = ( { 1o } ∖ 1o ) ) |
39 |
37 38
|
mpbi |
⊢ { 1o } = ( { 1o } ∖ 1o ) |
40 |
31 39
|
eqtr4i |
⊢ ( ( { 1o } ∪ 1o ) ∖ 1o ) = { 1o } |
41 |
30 40
|
eqtri |
⊢ ( 2o ∖ { ∅ } ) = { 1o } |
42 |
41
|
imaeq2i |
⊢ ( ◡ 𝑦 “ ( 2o ∖ { ∅ } ) ) = ( ◡ 𝑦 “ { 1o } ) |
43 |
23 42
|
eqtrdi |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ ( 2o ↑m 𝐴 ) ) → ( 𝑦 supp ∅ ) = ( ◡ 𝑦 “ { 1o } ) ) |
44 |
43
|
eleq1d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ ( 2o ↑m 𝐴 ) ) → ( ( 𝑦 supp ∅ ) ∈ Fin ↔ ( ◡ 𝑦 “ { 1o } ) ∈ Fin ) ) |
45 |
|
cnvimass |
⊢ ( ◡ 𝑦 “ { 1o } ) ⊆ dom 𝑦 |
46 |
45 21
|
fssdm |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ ( 2o ↑m 𝐴 ) ) → ( ◡ 𝑦 “ { 1o } ) ⊆ 𝐴 ) |
47 |
46
|
biantrurd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ ( 2o ↑m 𝐴 ) ) → ( ( ◡ 𝑦 “ { 1o } ) ∈ Fin ↔ ( ( ◡ 𝑦 “ { 1o } ) ⊆ 𝐴 ∧ ( ◡ 𝑦 “ { 1o } ) ∈ Fin ) ) ) |
48 |
18 44 47
|
3bitrd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ ( 2o ↑m 𝐴 ) ) → ( 𝑦 finSupp ∅ ↔ ( ( ◡ 𝑦 “ { 1o } ) ⊆ 𝐴 ∧ ( ◡ 𝑦 “ { 1o } ) ∈ Fin ) ) ) |
49 |
|
elfpw |
⊢ ( ( ◡ 𝑦 “ { 1o } ) ∈ ( 𝒫 𝐴 ∩ Fin ) ↔ ( ( ◡ 𝑦 “ { 1o } ) ⊆ 𝐴 ∧ ( ◡ 𝑦 “ { 1o } ) ∈ Fin ) ) |
50 |
48 49
|
bitr4di |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ ( 2o ↑m 𝐴 ) ) → ( 𝑦 finSupp ∅ ↔ ( ◡ 𝑦 “ { 1o } ) ∈ ( 𝒫 𝐴 ∩ Fin ) ) ) |
51 |
50
|
rabbidva |
⊢ ( 𝐴 ∈ 𝑉 → { 𝑦 ∈ ( 2o ↑m 𝐴 ) ∣ 𝑦 finSupp ∅ } = { 𝑦 ∈ ( 2o ↑m 𝐴 ) ∣ ( ◡ 𝑦 “ { 1o } ) ∈ ( 𝒫 𝐴 ∩ Fin ) } ) |
52 |
|
cnveq |
⊢ ( 𝑥 = 𝑦 → ◡ 𝑥 = ◡ 𝑦 ) |
53 |
52
|
imaeq1d |
⊢ ( 𝑥 = 𝑦 → ( ◡ 𝑥 “ { 1o } ) = ( ◡ 𝑦 “ { 1o } ) ) |
54 |
53
|
cbvmptv |
⊢ ( 𝑥 ∈ ( 2o ↑m 𝐴 ) ↦ ( ◡ 𝑥 “ { 1o } ) ) = ( 𝑦 ∈ ( 2o ↑m 𝐴 ) ↦ ( ◡ 𝑦 “ { 1o } ) ) |
55 |
54
|
mptpreima |
⊢ ( ◡ ( 𝑥 ∈ ( 2o ↑m 𝐴 ) ↦ ( ◡ 𝑥 “ { 1o } ) ) “ ( 𝒫 𝐴 ∩ Fin ) ) = { 𝑦 ∈ ( 2o ↑m 𝐴 ) ∣ ( ◡ 𝑦 “ { 1o } ) ∈ ( 𝒫 𝐴 ∩ Fin ) } |
56 |
51 1 55
|
3eqtr4g |
⊢ ( 𝐴 ∈ 𝑉 → 𝑆 = ( ◡ ( 𝑥 ∈ ( 2o ↑m 𝐴 ) ↦ ( ◡ 𝑥 “ { 1o } ) ) “ ( 𝒫 𝐴 ∩ Fin ) ) ) |
57 |
56
|
imaeq2d |
⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑥 ∈ ( 2o ↑m 𝐴 ) ↦ ( ◡ 𝑥 “ { 1o } ) ) “ 𝑆 ) = ( ( 𝑥 ∈ ( 2o ↑m 𝐴 ) ↦ ( ◡ 𝑥 “ { 1o } ) ) “ ( ◡ ( 𝑥 ∈ ( 2o ↑m 𝐴 ) ↦ ( ◡ 𝑥 “ { 1o } ) ) “ ( 𝒫 𝐴 ∩ Fin ) ) ) ) |
58 |
|
f1ofo |
⊢ ( ( 𝑥 ∈ ( 2o ↑m 𝐴 ) ↦ ( ◡ 𝑥 “ { 1o } ) ) : ( 2o ↑m 𝐴 ) –1-1-onto→ 𝒫 𝐴 → ( 𝑥 ∈ ( 2o ↑m 𝐴 ) ↦ ( ◡ 𝑥 “ { 1o } ) ) : ( 2o ↑m 𝐴 ) –onto→ 𝒫 𝐴 ) |
59 |
4 58
|
syl |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ ( 2o ↑m 𝐴 ) ↦ ( ◡ 𝑥 “ { 1o } ) ) : ( 2o ↑m 𝐴 ) –onto→ 𝒫 𝐴 ) |
60 |
|
inss1 |
⊢ ( 𝒫 𝐴 ∩ Fin ) ⊆ 𝒫 𝐴 |
61 |
|
foimacnv |
⊢ ( ( ( 𝑥 ∈ ( 2o ↑m 𝐴 ) ↦ ( ◡ 𝑥 “ { 1o } ) ) : ( 2o ↑m 𝐴 ) –onto→ 𝒫 𝐴 ∧ ( 𝒫 𝐴 ∩ Fin ) ⊆ 𝒫 𝐴 ) → ( ( 𝑥 ∈ ( 2o ↑m 𝐴 ) ↦ ( ◡ 𝑥 “ { 1o } ) ) “ ( ◡ ( 𝑥 ∈ ( 2o ↑m 𝐴 ) ↦ ( ◡ 𝑥 “ { 1o } ) ) “ ( 𝒫 𝐴 ∩ Fin ) ) ) = ( 𝒫 𝐴 ∩ Fin ) ) |
62 |
59 60 61
|
sylancl |
⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑥 ∈ ( 2o ↑m 𝐴 ) ↦ ( ◡ 𝑥 “ { 1o } ) ) “ ( ◡ ( 𝑥 ∈ ( 2o ↑m 𝐴 ) ↦ ( ◡ 𝑥 “ { 1o } ) ) “ ( 𝒫 𝐴 ∩ Fin ) ) ) = ( 𝒫 𝐴 ∩ Fin ) ) |
63 |
57 62
|
eqtrd |
⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑥 ∈ ( 2o ↑m 𝐴 ) ↦ ( ◡ 𝑥 “ { 1o } ) ) “ 𝑆 ) = ( 𝒫 𝐴 ∩ Fin ) ) |
64 |
|
f1oeq3 |
⊢ ( ( ( 𝑥 ∈ ( 2o ↑m 𝐴 ) ↦ ( ◡ 𝑥 “ { 1o } ) ) “ 𝑆 ) = ( 𝒫 𝐴 ∩ Fin ) → ( ( ( 𝑥 ∈ ( 2o ↑m 𝐴 ) ↦ ( ◡ 𝑥 “ { 1o } ) ) ↾ 𝑆 ) : 𝑆 –1-1-onto→ ( ( 𝑥 ∈ ( 2o ↑m 𝐴 ) ↦ ( ◡ 𝑥 “ { 1o } ) ) “ 𝑆 ) ↔ ( ( 𝑥 ∈ ( 2o ↑m 𝐴 ) ↦ ( ◡ 𝑥 “ { 1o } ) ) ↾ 𝑆 ) : 𝑆 –1-1-onto→ ( 𝒫 𝐴 ∩ Fin ) ) ) |
65 |
63 64
|
syl |
⊢ ( 𝐴 ∈ 𝑉 → ( ( ( 𝑥 ∈ ( 2o ↑m 𝐴 ) ↦ ( ◡ 𝑥 “ { 1o } ) ) ↾ 𝑆 ) : 𝑆 –1-1-onto→ ( ( 𝑥 ∈ ( 2o ↑m 𝐴 ) ↦ ( ◡ 𝑥 “ { 1o } ) ) “ 𝑆 ) ↔ ( ( 𝑥 ∈ ( 2o ↑m 𝐴 ) ↦ ( ◡ 𝑥 “ { 1o } ) ) ↾ 𝑆 ) : 𝑆 –1-1-onto→ ( 𝒫 𝐴 ∩ Fin ) ) ) |
66 |
|
resmpt |
⊢ ( 𝑆 ⊆ ( 2o ↑m 𝐴 ) → ( ( 𝑥 ∈ ( 2o ↑m 𝐴 ) ↦ ( ◡ 𝑥 “ { 1o } ) ) ↾ 𝑆 ) = ( 𝑥 ∈ 𝑆 ↦ ( ◡ 𝑥 “ { 1o } ) ) ) |
67 |
8 66
|
ax-mp |
⊢ ( ( 𝑥 ∈ ( 2o ↑m 𝐴 ) ↦ ( ◡ 𝑥 “ { 1o } ) ) ↾ 𝑆 ) = ( 𝑥 ∈ 𝑆 ↦ ( ◡ 𝑥 “ { 1o } ) ) |
68 |
67 2
|
eqtr4i |
⊢ ( ( 𝑥 ∈ ( 2o ↑m 𝐴 ) ↦ ( ◡ 𝑥 “ { 1o } ) ) ↾ 𝑆 ) = 𝐹 |
69 |
|
f1oeq1 |
⊢ ( ( ( 𝑥 ∈ ( 2o ↑m 𝐴 ) ↦ ( ◡ 𝑥 “ { 1o } ) ) ↾ 𝑆 ) = 𝐹 → ( ( ( 𝑥 ∈ ( 2o ↑m 𝐴 ) ↦ ( ◡ 𝑥 “ { 1o } ) ) ↾ 𝑆 ) : 𝑆 –1-1-onto→ ( 𝒫 𝐴 ∩ Fin ) ↔ 𝐹 : 𝑆 –1-1-onto→ ( 𝒫 𝐴 ∩ Fin ) ) ) |
70 |
68 69
|
mp1i |
⊢ ( 𝐴 ∈ 𝑉 → ( ( ( 𝑥 ∈ ( 2o ↑m 𝐴 ) ↦ ( ◡ 𝑥 “ { 1o } ) ) ↾ 𝑆 ) : 𝑆 –1-1-onto→ ( 𝒫 𝐴 ∩ Fin ) ↔ 𝐹 : 𝑆 –1-1-onto→ ( 𝒫 𝐴 ∩ Fin ) ) ) |
71 |
65 70
|
bitrd |
⊢ ( 𝐴 ∈ 𝑉 → ( ( ( 𝑥 ∈ ( 2o ↑m 𝐴 ) ↦ ( ◡ 𝑥 “ { 1o } ) ) ↾ 𝑆 ) : 𝑆 –1-1-onto→ ( ( 𝑥 ∈ ( 2o ↑m 𝐴 ) ↦ ( ◡ 𝑥 “ { 1o } ) ) “ 𝑆 ) ↔ 𝐹 : 𝑆 –1-1-onto→ ( 𝒫 𝐴 ∩ Fin ) ) ) |
72 |
10 71
|
mpbid |
⊢ ( 𝐴 ∈ 𝑉 → 𝐹 : 𝑆 –1-1-onto→ ( 𝒫 𝐴 ∩ Fin ) ) |