| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pwfi2f1o.s | ⊢ 𝑆  =  { 𝑦  ∈  ( 2o  ↑m  𝐴 )  ∣  𝑦  finSupp  ∅ } | 
						
							| 2 |  | pwfi2f1o.f | ⊢ 𝐹  =  ( 𝑥  ∈  𝑆  ↦  ( ◡ 𝑥  “  { 1o } ) ) | 
						
							| 3 |  | eqid | ⊢ ( 𝑥  ∈  ( 2o  ↑m  𝐴 )  ↦  ( ◡ 𝑥  “  { 1o } ) )  =  ( 𝑥  ∈  ( 2o  ↑m  𝐴 )  ↦  ( ◡ 𝑥  “  { 1o } ) ) | 
						
							| 4 | 3 | pw2f1o2 | ⊢ ( 𝐴  ∈  𝑉  →  ( 𝑥  ∈  ( 2o  ↑m  𝐴 )  ↦  ( ◡ 𝑥  “  { 1o } ) ) : ( 2o  ↑m  𝐴 ) –1-1-onto→ 𝒫  𝐴 ) | 
						
							| 5 |  | f1of1 | ⊢ ( ( 𝑥  ∈  ( 2o  ↑m  𝐴 )  ↦  ( ◡ 𝑥  “  { 1o } ) ) : ( 2o  ↑m  𝐴 ) –1-1-onto→ 𝒫  𝐴  →  ( 𝑥  ∈  ( 2o  ↑m  𝐴 )  ↦  ( ◡ 𝑥  “  { 1o } ) ) : ( 2o  ↑m  𝐴 ) –1-1→ 𝒫  𝐴 ) | 
						
							| 6 | 4 5 | syl | ⊢ ( 𝐴  ∈  𝑉  →  ( 𝑥  ∈  ( 2o  ↑m  𝐴 )  ↦  ( ◡ 𝑥  “  { 1o } ) ) : ( 2o  ↑m  𝐴 ) –1-1→ 𝒫  𝐴 ) | 
						
							| 7 |  | ssrab2 | ⊢ { 𝑦  ∈  ( 2o  ↑m  𝐴 )  ∣  𝑦  finSupp  ∅ }  ⊆  ( 2o  ↑m  𝐴 ) | 
						
							| 8 | 1 7 | eqsstri | ⊢ 𝑆  ⊆  ( 2o  ↑m  𝐴 ) | 
						
							| 9 |  | f1ores | ⊢ ( ( ( 𝑥  ∈  ( 2o  ↑m  𝐴 )  ↦  ( ◡ 𝑥  “  { 1o } ) ) : ( 2o  ↑m  𝐴 ) –1-1→ 𝒫  𝐴  ∧  𝑆  ⊆  ( 2o  ↑m  𝐴 ) )  →  ( ( 𝑥  ∈  ( 2o  ↑m  𝐴 )  ↦  ( ◡ 𝑥  “  { 1o } ) )  ↾  𝑆 ) : 𝑆 –1-1-onto→ ( ( 𝑥  ∈  ( 2o  ↑m  𝐴 )  ↦  ( ◡ 𝑥  “  { 1o } ) )  “  𝑆 ) ) | 
						
							| 10 | 6 8 9 | sylancl | ⊢ ( 𝐴  ∈  𝑉  →  ( ( 𝑥  ∈  ( 2o  ↑m  𝐴 )  ↦  ( ◡ 𝑥  “  { 1o } ) )  ↾  𝑆 ) : 𝑆 –1-1-onto→ ( ( 𝑥  ∈  ( 2o  ↑m  𝐴 )  ↦  ( ◡ 𝑥  “  { 1o } ) )  “  𝑆 ) ) | 
						
							| 11 |  | elmapfun | ⊢ ( 𝑦  ∈  ( 2o  ↑m  𝐴 )  →  Fun  𝑦 ) | 
						
							| 12 |  | id | ⊢ ( 𝑦  ∈  ( 2o  ↑m  𝐴 )  →  𝑦  ∈  ( 2o  ↑m  𝐴 ) ) | 
						
							| 13 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 14 | 13 | a1i | ⊢ ( 𝑦  ∈  ( 2o  ↑m  𝐴 )  →  ∅  ∈  V ) | 
						
							| 15 | 11 12 14 | 3jca | ⊢ ( 𝑦  ∈  ( 2o  ↑m  𝐴 )  →  ( Fun  𝑦  ∧  𝑦  ∈  ( 2o  ↑m  𝐴 )  ∧  ∅  ∈  V ) ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑦  ∈  ( 2o  ↑m  𝐴 ) )  →  ( Fun  𝑦  ∧  𝑦  ∈  ( 2o  ↑m  𝐴 )  ∧  ∅  ∈  V ) ) | 
						
							| 17 |  | funisfsupp | ⊢ ( ( Fun  𝑦  ∧  𝑦  ∈  ( 2o  ↑m  𝐴 )  ∧  ∅  ∈  V )  →  ( 𝑦  finSupp  ∅  ↔  ( 𝑦  supp  ∅ )  ∈  Fin ) ) | 
						
							| 18 | 16 17 | syl | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑦  ∈  ( 2o  ↑m  𝐴 ) )  →  ( 𝑦  finSupp  ∅  ↔  ( 𝑦  supp  ∅ )  ∈  Fin ) ) | 
						
							| 19 | 14 | anim2i | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑦  ∈  ( 2o  ↑m  𝐴 ) )  →  ( 𝐴  ∈  𝑉  ∧  ∅  ∈  V ) ) | 
						
							| 20 |  | elmapi | ⊢ ( 𝑦  ∈  ( 2o  ↑m  𝐴 )  →  𝑦 : 𝐴 ⟶ 2o ) | 
						
							| 21 | 20 | adantl | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑦  ∈  ( 2o  ↑m  𝐴 ) )  →  𝑦 : 𝐴 ⟶ 2o ) | 
						
							| 22 |  | fsuppeq | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ∅  ∈  V )  →  ( 𝑦 : 𝐴 ⟶ 2o  →  ( 𝑦  supp  ∅ )  =  ( ◡ 𝑦  “  ( 2o  ∖  { ∅ } ) ) ) ) | 
						
							| 23 | 19 21 22 | sylc | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑦  ∈  ( 2o  ↑m  𝐴 ) )  →  ( 𝑦  supp  ∅ )  =  ( ◡ 𝑦  “  ( 2o  ∖  { ∅ } ) ) ) | 
						
							| 24 |  | df-2o | ⊢ 2o  =  suc  1o | 
						
							| 25 |  | df-suc | ⊢ suc  1o  =  ( 1o  ∪  { 1o } ) | 
						
							| 26 | 25 | equncomi | ⊢ suc  1o  =  ( { 1o }  ∪  1o ) | 
						
							| 27 | 24 26 | eqtri | ⊢ 2o  =  ( { 1o }  ∪  1o ) | 
						
							| 28 |  | df1o2 | ⊢ 1o  =  { ∅ } | 
						
							| 29 | 28 | eqcomi | ⊢ { ∅ }  =  1o | 
						
							| 30 | 27 29 | difeq12i | ⊢ ( 2o  ∖  { ∅ } )  =  ( ( { 1o }  ∪  1o )  ∖  1o ) | 
						
							| 31 |  | difun2 | ⊢ ( ( { 1o }  ∪  1o )  ∖  1o )  =  ( { 1o }  ∖  1o ) | 
						
							| 32 |  | incom | ⊢ ( { 1o }  ∩  1o )  =  ( 1o  ∩  { 1o } ) | 
						
							| 33 |  | 1on | ⊢ 1o  ∈  On | 
						
							| 34 | 33 | onordi | ⊢ Ord  1o | 
						
							| 35 |  | orddisj | ⊢ ( Ord  1o  →  ( 1o  ∩  { 1o } )  =  ∅ ) | 
						
							| 36 | 34 35 | ax-mp | ⊢ ( 1o  ∩  { 1o } )  =  ∅ | 
						
							| 37 | 32 36 | eqtri | ⊢ ( { 1o }  ∩  1o )  =  ∅ | 
						
							| 38 |  | disj3 | ⊢ ( ( { 1o }  ∩  1o )  =  ∅  ↔  { 1o }  =  ( { 1o }  ∖  1o ) ) | 
						
							| 39 | 37 38 | mpbi | ⊢ { 1o }  =  ( { 1o }  ∖  1o ) | 
						
							| 40 | 31 39 | eqtr4i | ⊢ ( ( { 1o }  ∪  1o )  ∖  1o )  =  { 1o } | 
						
							| 41 | 30 40 | eqtri | ⊢ ( 2o  ∖  { ∅ } )  =  { 1o } | 
						
							| 42 | 41 | imaeq2i | ⊢ ( ◡ 𝑦  “  ( 2o  ∖  { ∅ } ) )  =  ( ◡ 𝑦  “  { 1o } ) | 
						
							| 43 | 23 42 | eqtrdi | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑦  ∈  ( 2o  ↑m  𝐴 ) )  →  ( 𝑦  supp  ∅ )  =  ( ◡ 𝑦  “  { 1o } ) ) | 
						
							| 44 | 43 | eleq1d | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑦  ∈  ( 2o  ↑m  𝐴 ) )  →  ( ( 𝑦  supp  ∅ )  ∈  Fin  ↔  ( ◡ 𝑦  “  { 1o } )  ∈  Fin ) ) | 
						
							| 45 |  | cnvimass | ⊢ ( ◡ 𝑦  “  { 1o } )  ⊆  dom  𝑦 | 
						
							| 46 | 45 21 | fssdm | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑦  ∈  ( 2o  ↑m  𝐴 ) )  →  ( ◡ 𝑦  “  { 1o } )  ⊆  𝐴 ) | 
						
							| 47 | 46 | biantrurd | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑦  ∈  ( 2o  ↑m  𝐴 ) )  →  ( ( ◡ 𝑦  “  { 1o } )  ∈  Fin  ↔  ( ( ◡ 𝑦  “  { 1o } )  ⊆  𝐴  ∧  ( ◡ 𝑦  “  { 1o } )  ∈  Fin ) ) ) | 
						
							| 48 | 18 44 47 | 3bitrd | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑦  ∈  ( 2o  ↑m  𝐴 ) )  →  ( 𝑦  finSupp  ∅  ↔  ( ( ◡ 𝑦  “  { 1o } )  ⊆  𝐴  ∧  ( ◡ 𝑦  “  { 1o } )  ∈  Fin ) ) ) | 
						
							| 49 |  | elfpw | ⊢ ( ( ◡ 𝑦  “  { 1o } )  ∈  ( 𝒫  𝐴  ∩  Fin )  ↔  ( ( ◡ 𝑦  “  { 1o } )  ⊆  𝐴  ∧  ( ◡ 𝑦  “  { 1o } )  ∈  Fin ) ) | 
						
							| 50 | 48 49 | bitr4di | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑦  ∈  ( 2o  ↑m  𝐴 ) )  →  ( 𝑦  finSupp  ∅  ↔  ( ◡ 𝑦  “  { 1o } )  ∈  ( 𝒫  𝐴  ∩  Fin ) ) ) | 
						
							| 51 | 50 | rabbidva | ⊢ ( 𝐴  ∈  𝑉  →  { 𝑦  ∈  ( 2o  ↑m  𝐴 )  ∣  𝑦  finSupp  ∅ }  =  { 𝑦  ∈  ( 2o  ↑m  𝐴 )  ∣  ( ◡ 𝑦  “  { 1o } )  ∈  ( 𝒫  𝐴  ∩  Fin ) } ) | 
						
							| 52 |  | cnveq | ⊢ ( 𝑥  =  𝑦  →  ◡ 𝑥  =  ◡ 𝑦 ) | 
						
							| 53 | 52 | imaeq1d | ⊢ ( 𝑥  =  𝑦  →  ( ◡ 𝑥  “  { 1o } )  =  ( ◡ 𝑦  “  { 1o } ) ) | 
						
							| 54 | 53 | cbvmptv | ⊢ ( 𝑥  ∈  ( 2o  ↑m  𝐴 )  ↦  ( ◡ 𝑥  “  { 1o } ) )  =  ( 𝑦  ∈  ( 2o  ↑m  𝐴 )  ↦  ( ◡ 𝑦  “  { 1o } ) ) | 
						
							| 55 | 54 | mptpreima | ⊢ ( ◡ ( 𝑥  ∈  ( 2o  ↑m  𝐴 )  ↦  ( ◡ 𝑥  “  { 1o } ) )  “  ( 𝒫  𝐴  ∩  Fin ) )  =  { 𝑦  ∈  ( 2o  ↑m  𝐴 )  ∣  ( ◡ 𝑦  “  { 1o } )  ∈  ( 𝒫  𝐴  ∩  Fin ) } | 
						
							| 56 | 51 1 55 | 3eqtr4g | ⊢ ( 𝐴  ∈  𝑉  →  𝑆  =  ( ◡ ( 𝑥  ∈  ( 2o  ↑m  𝐴 )  ↦  ( ◡ 𝑥  “  { 1o } ) )  “  ( 𝒫  𝐴  ∩  Fin ) ) ) | 
						
							| 57 | 56 | imaeq2d | ⊢ ( 𝐴  ∈  𝑉  →  ( ( 𝑥  ∈  ( 2o  ↑m  𝐴 )  ↦  ( ◡ 𝑥  “  { 1o } ) )  “  𝑆 )  =  ( ( 𝑥  ∈  ( 2o  ↑m  𝐴 )  ↦  ( ◡ 𝑥  “  { 1o } ) )  “  ( ◡ ( 𝑥  ∈  ( 2o  ↑m  𝐴 )  ↦  ( ◡ 𝑥  “  { 1o } ) )  “  ( 𝒫  𝐴  ∩  Fin ) ) ) ) | 
						
							| 58 |  | f1ofo | ⊢ ( ( 𝑥  ∈  ( 2o  ↑m  𝐴 )  ↦  ( ◡ 𝑥  “  { 1o } ) ) : ( 2o  ↑m  𝐴 ) –1-1-onto→ 𝒫  𝐴  →  ( 𝑥  ∈  ( 2o  ↑m  𝐴 )  ↦  ( ◡ 𝑥  “  { 1o } ) ) : ( 2o  ↑m  𝐴 ) –onto→ 𝒫  𝐴 ) | 
						
							| 59 | 4 58 | syl | ⊢ ( 𝐴  ∈  𝑉  →  ( 𝑥  ∈  ( 2o  ↑m  𝐴 )  ↦  ( ◡ 𝑥  “  { 1o } ) ) : ( 2o  ↑m  𝐴 ) –onto→ 𝒫  𝐴 ) | 
						
							| 60 |  | inss1 | ⊢ ( 𝒫  𝐴  ∩  Fin )  ⊆  𝒫  𝐴 | 
						
							| 61 |  | foimacnv | ⊢ ( ( ( 𝑥  ∈  ( 2o  ↑m  𝐴 )  ↦  ( ◡ 𝑥  “  { 1o } ) ) : ( 2o  ↑m  𝐴 ) –onto→ 𝒫  𝐴  ∧  ( 𝒫  𝐴  ∩  Fin )  ⊆  𝒫  𝐴 )  →  ( ( 𝑥  ∈  ( 2o  ↑m  𝐴 )  ↦  ( ◡ 𝑥  “  { 1o } ) )  “  ( ◡ ( 𝑥  ∈  ( 2o  ↑m  𝐴 )  ↦  ( ◡ 𝑥  “  { 1o } ) )  “  ( 𝒫  𝐴  ∩  Fin ) ) )  =  ( 𝒫  𝐴  ∩  Fin ) ) | 
						
							| 62 | 59 60 61 | sylancl | ⊢ ( 𝐴  ∈  𝑉  →  ( ( 𝑥  ∈  ( 2o  ↑m  𝐴 )  ↦  ( ◡ 𝑥  “  { 1o } ) )  “  ( ◡ ( 𝑥  ∈  ( 2o  ↑m  𝐴 )  ↦  ( ◡ 𝑥  “  { 1o } ) )  “  ( 𝒫  𝐴  ∩  Fin ) ) )  =  ( 𝒫  𝐴  ∩  Fin ) ) | 
						
							| 63 | 57 62 | eqtrd | ⊢ ( 𝐴  ∈  𝑉  →  ( ( 𝑥  ∈  ( 2o  ↑m  𝐴 )  ↦  ( ◡ 𝑥  “  { 1o } ) )  “  𝑆 )  =  ( 𝒫  𝐴  ∩  Fin ) ) | 
						
							| 64 |  | f1oeq3 | ⊢ ( ( ( 𝑥  ∈  ( 2o  ↑m  𝐴 )  ↦  ( ◡ 𝑥  “  { 1o } ) )  “  𝑆 )  =  ( 𝒫  𝐴  ∩  Fin )  →  ( ( ( 𝑥  ∈  ( 2o  ↑m  𝐴 )  ↦  ( ◡ 𝑥  “  { 1o } ) )  ↾  𝑆 ) : 𝑆 –1-1-onto→ ( ( 𝑥  ∈  ( 2o  ↑m  𝐴 )  ↦  ( ◡ 𝑥  “  { 1o } ) )  “  𝑆 )  ↔  ( ( 𝑥  ∈  ( 2o  ↑m  𝐴 )  ↦  ( ◡ 𝑥  “  { 1o } ) )  ↾  𝑆 ) : 𝑆 –1-1-onto→ ( 𝒫  𝐴  ∩  Fin ) ) ) | 
						
							| 65 | 63 64 | syl | ⊢ ( 𝐴  ∈  𝑉  →  ( ( ( 𝑥  ∈  ( 2o  ↑m  𝐴 )  ↦  ( ◡ 𝑥  “  { 1o } ) )  ↾  𝑆 ) : 𝑆 –1-1-onto→ ( ( 𝑥  ∈  ( 2o  ↑m  𝐴 )  ↦  ( ◡ 𝑥  “  { 1o } ) )  “  𝑆 )  ↔  ( ( 𝑥  ∈  ( 2o  ↑m  𝐴 )  ↦  ( ◡ 𝑥  “  { 1o } ) )  ↾  𝑆 ) : 𝑆 –1-1-onto→ ( 𝒫  𝐴  ∩  Fin ) ) ) | 
						
							| 66 |  | resmpt | ⊢ ( 𝑆  ⊆  ( 2o  ↑m  𝐴 )  →  ( ( 𝑥  ∈  ( 2o  ↑m  𝐴 )  ↦  ( ◡ 𝑥  “  { 1o } ) )  ↾  𝑆 )  =  ( 𝑥  ∈  𝑆  ↦  ( ◡ 𝑥  “  { 1o } ) ) ) | 
						
							| 67 | 8 66 | ax-mp | ⊢ ( ( 𝑥  ∈  ( 2o  ↑m  𝐴 )  ↦  ( ◡ 𝑥  “  { 1o } ) )  ↾  𝑆 )  =  ( 𝑥  ∈  𝑆  ↦  ( ◡ 𝑥  “  { 1o } ) ) | 
						
							| 68 | 67 2 | eqtr4i | ⊢ ( ( 𝑥  ∈  ( 2o  ↑m  𝐴 )  ↦  ( ◡ 𝑥  “  { 1o } ) )  ↾  𝑆 )  =  𝐹 | 
						
							| 69 |  | f1oeq1 | ⊢ ( ( ( 𝑥  ∈  ( 2o  ↑m  𝐴 )  ↦  ( ◡ 𝑥  “  { 1o } ) )  ↾  𝑆 )  =  𝐹  →  ( ( ( 𝑥  ∈  ( 2o  ↑m  𝐴 )  ↦  ( ◡ 𝑥  “  { 1o } ) )  ↾  𝑆 ) : 𝑆 –1-1-onto→ ( 𝒫  𝐴  ∩  Fin )  ↔  𝐹 : 𝑆 –1-1-onto→ ( 𝒫  𝐴  ∩  Fin ) ) ) | 
						
							| 70 | 68 69 | mp1i | ⊢ ( 𝐴  ∈  𝑉  →  ( ( ( 𝑥  ∈  ( 2o  ↑m  𝐴 )  ↦  ( ◡ 𝑥  “  { 1o } ) )  ↾  𝑆 ) : 𝑆 –1-1-onto→ ( 𝒫  𝐴  ∩  Fin )  ↔  𝐹 : 𝑆 –1-1-onto→ ( 𝒫  𝐴  ∩  Fin ) ) ) | 
						
							| 71 | 65 70 | bitrd | ⊢ ( 𝐴  ∈  𝑉  →  ( ( ( 𝑥  ∈  ( 2o  ↑m  𝐴 )  ↦  ( ◡ 𝑥  “  { 1o } ) )  ↾  𝑆 ) : 𝑆 –1-1-onto→ ( ( 𝑥  ∈  ( 2o  ↑m  𝐴 )  ↦  ( ◡ 𝑥  “  { 1o } ) )  “  𝑆 )  ↔  𝐹 : 𝑆 –1-1-onto→ ( 𝒫  𝐴  ∩  Fin ) ) ) | 
						
							| 72 | 10 71 | mpbid | ⊢ ( 𝐴  ∈  𝑉  →  𝐹 : 𝑆 –1-1-onto→ ( 𝒫  𝐴  ∩  Fin ) ) |