Metamath Proof Explorer


Theorem pwfi2f1o

Description: The pw2f1o bijection relates finitely supported indicator functions on a two-element set to finite subsets.MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015) (Revised by AV, 14-Jun-2020)

Ref Expression
Hypotheses pwfi2f1o.s 𝑆 = { 𝑦 ∈ ( 2om 𝐴 ) ∣ 𝑦 finSupp ∅ }
pwfi2f1o.f 𝐹 = ( 𝑥𝑆 ↦ ( 𝑥 “ { 1o } ) )
Assertion pwfi2f1o ( 𝐴𝑉𝐹 : 𝑆1-1-onto→ ( 𝒫 𝐴 ∩ Fin ) )

Proof

Step Hyp Ref Expression
1 pwfi2f1o.s 𝑆 = { 𝑦 ∈ ( 2om 𝐴 ) ∣ 𝑦 finSupp ∅ }
2 pwfi2f1o.f 𝐹 = ( 𝑥𝑆 ↦ ( 𝑥 “ { 1o } ) )
3 eqid ( 𝑥 ∈ ( 2om 𝐴 ) ↦ ( 𝑥 “ { 1o } ) ) = ( 𝑥 ∈ ( 2om 𝐴 ) ↦ ( 𝑥 “ { 1o } ) )
4 3 pw2f1o2 ( 𝐴𝑉 → ( 𝑥 ∈ ( 2om 𝐴 ) ↦ ( 𝑥 “ { 1o } ) ) : ( 2om 𝐴 ) –1-1-onto→ 𝒫 𝐴 )
5 f1of1 ( ( 𝑥 ∈ ( 2om 𝐴 ) ↦ ( 𝑥 “ { 1o } ) ) : ( 2om 𝐴 ) –1-1-onto→ 𝒫 𝐴 → ( 𝑥 ∈ ( 2om 𝐴 ) ↦ ( 𝑥 “ { 1o } ) ) : ( 2om 𝐴 ) –1-1→ 𝒫 𝐴 )
6 4 5 syl ( 𝐴𝑉 → ( 𝑥 ∈ ( 2om 𝐴 ) ↦ ( 𝑥 “ { 1o } ) ) : ( 2om 𝐴 ) –1-1→ 𝒫 𝐴 )
7 ssrab2 { 𝑦 ∈ ( 2om 𝐴 ) ∣ 𝑦 finSupp ∅ } ⊆ ( 2om 𝐴 )
8 1 7 eqsstri 𝑆 ⊆ ( 2om 𝐴 )
9 f1ores ( ( ( 𝑥 ∈ ( 2om 𝐴 ) ↦ ( 𝑥 “ { 1o } ) ) : ( 2om 𝐴 ) –1-1→ 𝒫 𝐴𝑆 ⊆ ( 2om 𝐴 ) ) → ( ( 𝑥 ∈ ( 2om 𝐴 ) ↦ ( 𝑥 “ { 1o } ) ) ↾ 𝑆 ) : 𝑆1-1-onto→ ( ( 𝑥 ∈ ( 2om 𝐴 ) ↦ ( 𝑥 “ { 1o } ) ) “ 𝑆 ) )
10 6 8 9 sylancl ( 𝐴𝑉 → ( ( 𝑥 ∈ ( 2om 𝐴 ) ↦ ( 𝑥 “ { 1o } ) ) ↾ 𝑆 ) : 𝑆1-1-onto→ ( ( 𝑥 ∈ ( 2om 𝐴 ) ↦ ( 𝑥 “ { 1o } ) ) “ 𝑆 ) )
11 elmapfun ( 𝑦 ∈ ( 2om 𝐴 ) → Fun 𝑦 )
12 id ( 𝑦 ∈ ( 2om 𝐴 ) → 𝑦 ∈ ( 2om 𝐴 ) )
13 0ex ∅ ∈ V
14 13 a1i ( 𝑦 ∈ ( 2om 𝐴 ) → ∅ ∈ V )
15 11 12 14 3jca ( 𝑦 ∈ ( 2om 𝐴 ) → ( Fun 𝑦𝑦 ∈ ( 2om 𝐴 ) ∧ ∅ ∈ V ) )
16 15 adantl ( ( 𝐴𝑉𝑦 ∈ ( 2om 𝐴 ) ) → ( Fun 𝑦𝑦 ∈ ( 2om 𝐴 ) ∧ ∅ ∈ V ) )
17 funisfsupp ( ( Fun 𝑦𝑦 ∈ ( 2om 𝐴 ) ∧ ∅ ∈ V ) → ( 𝑦 finSupp ∅ ↔ ( 𝑦 supp ∅ ) ∈ Fin ) )
18 16 17 syl ( ( 𝐴𝑉𝑦 ∈ ( 2om 𝐴 ) ) → ( 𝑦 finSupp ∅ ↔ ( 𝑦 supp ∅ ) ∈ Fin ) )
19 14 anim2i ( ( 𝐴𝑉𝑦 ∈ ( 2om 𝐴 ) ) → ( 𝐴𝑉 ∧ ∅ ∈ V ) )
20 elmapi ( 𝑦 ∈ ( 2om 𝐴 ) → 𝑦 : 𝐴 ⟶ 2o )
21 20 adantl ( ( 𝐴𝑉𝑦 ∈ ( 2om 𝐴 ) ) → 𝑦 : 𝐴 ⟶ 2o )
22 frnsuppeq ( ( 𝐴𝑉 ∧ ∅ ∈ V ) → ( 𝑦 : 𝐴 ⟶ 2o → ( 𝑦 supp ∅ ) = ( 𝑦 “ ( 2o ∖ { ∅ } ) ) ) )
23 19 21 22 sylc ( ( 𝐴𝑉𝑦 ∈ ( 2om 𝐴 ) ) → ( 𝑦 supp ∅ ) = ( 𝑦 “ ( 2o ∖ { ∅ } ) ) )
24 df-2o 2o = suc 1o
25 df-suc suc 1o = ( 1o ∪ { 1o } )
26 25 equncomi suc 1o = ( { 1o } ∪ 1o )
27 24 26 eqtri 2o = ( { 1o } ∪ 1o )
28 df1o2 1o = { ∅ }
29 28 eqcomi { ∅ } = 1o
30 27 29 difeq12i ( 2o ∖ { ∅ } ) = ( ( { 1o } ∪ 1o ) ∖ 1o )
31 difun2 ( ( { 1o } ∪ 1o ) ∖ 1o ) = ( { 1o } ∖ 1o )
32 incom ( { 1o } ∩ 1o ) = ( 1o ∩ { 1o } )
33 1on 1o ∈ On
34 33 onordi Ord 1o
35 orddisj ( Ord 1o → ( 1o ∩ { 1o } ) = ∅ )
36 34 35 ax-mp ( 1o ∩ { 1o } ) = ∅
37 32 36 eqtri ( { 1o } ∩ 1o ) = ∅
38 disj3 ( ( { 1o } ∩ 1o ) = ∅ ↔ { 1o } = ( { 1o } ∖ 1o ) )
39 37 38 mpbi { 1o } = ( { 1o } ∖ 1o )
40 31 39 eqtr4i ( ( { 1o } ∪ 1o ) ∖ 1o ) = { 1o }
41 30 40 eqtri ( 2o ∖ { ∅ } ) = { 1o }
42 41 imaeq2i ( 𝑦 “ ( 2o ∖ { ∅ } ) ) = ( 𝑦 “ { 1o } )
43 23 42 eqtrdi ( ( 𝐴𝑉𝑦 ∈ ( 2om 𝐴 ) ) → ( 𝑦 supp ∅ ) = ( 𝑦 “ { 1o } ) )
44 43 eleq1d ( ( 𝐴𝑉𝑦 ∈ ( 2om 𝐴 ) ) → ( ( 𝑦 supp ∅ ) ∈ Fin ↔ ( 𝑦 “ { 1o } ) ∈ Fin ) )
45 cnvimass ( 𝑦 “ { 1o } ) ⊆ dom 𝑦
46 45 21 fssdm ( ( 𝐴𝑉𝑦 ∈ ( 2om 𝐴 ) ) → ( 𝑦 “ { 1o } ) ⊆ 𝐴 )
47 46 biantrurd ( ( 𝐴𝑉𝑦 ∈ ( 2om 𝐴 ) ) → ( ( 𝑦 “ { 1o } ) ∈ Fin ↔ ( ( 𝑦 “ { 1o } ) ⊆ 𝐴 ∧ ( 𝑦 “ { 1o } ) ∈ Fin ) ) )
48 18 44 47 3bitrd ( ( 𝐴𝑉𝑦 ∈ ( 2om 𝐴 ) ) → ( 𝑦 finSupp ∅ ↔ ( ( 𝑦 “ { 1o } ) ⊆ 𝐴 ∧ ( 𝑦 “ { 1o } ) ∈ Fin ) ) )
49 elfpw ( ( 𝑦 “ { 1o } ) ∈ ( 𝒫 𝐴 ∩ Fin ) ↔ ( ( 𝑦 “ { 1o } ) ⊆ 𝐴 ∧ ( 𝑦 “ { 1o } ) ∈ Fin ) )
50 48 49 bitr4di ( ( 𝐴𝑉𝑦 ∈ ( 2om 𝐴 ) ) → ( 𝑦 finSupp ∅ ↔ ( 𝑦 “ { 1o } ) ∈ ( 𝒫 𝐴 ∩ Fin ) ) )
51 50 rabbidva ( 𝐴𝑉 → { 𝑦 ∈ ( 2om 𝐴 ) ∣ 𝑦 finSupp ∅ } = { 𝑦 ∈ ( 2om 𝐴 ) ∣ ( 𝑦 “ { 1o } ) ∈ ( 𝒫 𝐴 ∩ Fin ) } )
52 cnveq ( 𝑥 = 𝑦 𝑥 = 𝑦 )
53 52 imaeq1d ( 𝑥 = 𝑦 → ( 𝑥 “ { 1o } ) = ( 𝑦 “ { 1o } ) )
54 53 cbvmptv ( 𝑥 ∈ ( 2om 𝐴 ) ↦ ( 𝑥 “ { 1o } ) ) = ( 𝑦 ∈ ( 2om 𝐴 ) ↦ ( 𝑦 “ { 1o } ) )
55 54 mptpreima ( ( 𝑥 ∈ ( 2om 𝐴 ) ↦ ( 𝑥 “ { 1o } ) ) “ ( 𝒫 𝐴 ∩ Fin ) ) = { 𝑦 ∈ ( 2om 𝐴 ) ∣ ( 𝑦 “ { 1o } ) ∈ ( 𝒫 𝐴 ∩ Fin ) }
56 51 1 55 3eqtr4g ( 𝐴𝑉𝑆 = ( ( 𝑥 ∈ ( 2om 𝐴 ) ↦ ( 𝑥 “ { 1o } ) ) “ ( 𝒫 𝐴 ∩ Fin ) ) )
57 56 imaeq2d ( 𝐴𝑉 → ( ( 𝑥 ∈ ( 2om 𝐴 ) ↦ ( 𝑥 “ { 1o } ) ) “ 𝑆 ) = ( ( 𝑥 ∈ ( 2om 𝐴 ) ↦ ( 𝑥 “ { 1o } ) ) “ ( ( 𝑥 ∈ ( 2om 𝐴 ) ↦ ( 𝑥 “ { 1o } ) ) “ ( 𝒫 𝐴 ∩ Fin ) ) ) )
58 f1ofo ( ( 𝑥 ∈ ( 2om 𝐴 ) ↦ ( 𝑥 “ { 1o } ) ) : ( 2om 𝐴 ) –1-1-onto→ 𝒫 𝐴 → ( 𝑥 ∈ ( 2om 𝐴 ) ↦ ( 𝑥 “ { 1o } ) ) : ( 2om 𝐴 ) –onto→ 𝒫 𝐴 )
59 4 58 syl ( 𝐴𝑉 → ( 𝑥 ∈ ( 2om 𝐴 ) ↦ ( 𝑥 “ { 1o } ) ) : ( 2om 𝐴 ) –onto→ 𝒫 𝐴 )
60 inss1 ( 𝒫 𝐴 ∩ Fin ) ⊆ 𝒫 𝐴
61 foimacnv ( ( ( 𝑥 ∈ ( 2om 𝐴 ) ↦ ( 𝑥 “ { 1o } ) ) : ( 2om 𝐴 ) –onto→ 𝒫 𝐴 ∧ ( 𝒫 𝐴 ∩ Fin ) ⊆ 𝒫 𝐴 ) → ( ( 𝑥 ∈ ( 2om 𝐴 ) ↦ ( 𝑥 “ { 1o } ) ) “ ( ( 𝑥 ∈ ( 2om 𝐴 ) ↦ ( 𝑥 “ { 1o } ) ) “ ( 𝒫 𝐴 ∩ Fin ) ) ) = ( 𝒫 𝐴 ∩ Fin ) )
62 59 60 61 sylancl ( 𝐴𝑉 → ( ( 𝑥 ∈ ( 2om 𝐴 ) ↦ ( 𝑥 “ { 1o } ) ) “ ( ( 𝑥 ∈ ( 2om 𝐴 ) ↦ ( 𝑥 “ { 1o } ) ) “ ( 𝒫 𝐴 ∩ Fin ) ) ) = ( 𝒫 𝐴 ∩ Fin ) )
63 57 62 eqtrd ( 𝐴𝑉 → ( ( 𝑥 ∈ ( 2om 𝐴 ) ↦ ( 𝑥 “ { 1o } ) ) “ 𝑆 ) = ( 𝒫 𝐴 ∩ Fin ) )
64 f1oeq3 ( ( ( 𝑥 ∈ ( 2om 𝐴 ) ↦ ( 𝑥 “ { 1o } ) ) “ 𝑆 ) = ( 𝒫 𝐴 ∩ Fin ) → ( ( ( 𝑥 ∈ ( 2om 𝐴 ) ↦ ( 𝑥 “ { 1o } ) ) ↾ 𝑆 ) : 𝑆1-1-onto→ ( ( 𝑥 ∈ ( 2om 𝐴 ) ↦ ( 𝑥 “ { 1o } ) ) “ 𝑆 ) ↔ ( ( 𝑥 ∈ ( 2om 𝐴 ) ↦ ( 𝑥 “ { 1o } ) ) ↾ 𝑆 ) : 𝑆1-1-onto→ ( 𝒫 𝐴 ∩ Fin ) ) )
65 63 64 syl ( 𝐴𝑉 → ( ( ( 𝑥 ∈ ( 2om 𝐴 ) ↦ ( 𝑥 “ { 1o } ) ) ↾ 𝑆 ) : 𝑆1-1-onto→ ( ( 𝑥 ∈ ( 2om 𝐴 ) ↦ ( 𝑥 “ { 1o } ) ) “ 𝑆 ) ↔ ( ( 𝑥 ∈ ( 2om 𝐴 ) ↦ ( 𝑥 “ { 1o } ) ) ↾ 𝑆 ) : 𝑆1-1-onto→ ( 𝒫 𝐴 ∩ Fin ) ) )
66 resmpt ( 𝑆 ⊆ ( 2om 𝐴 ) → ( ( 𝑥 ∈ ( 2om 𝐴 ) ↦ ( 𝑥 “ { 1o } ) ) ↾ 𝑆 ) = ( 𝑥𝑆 ↦ ( 𝑥 “ { 1o } ) ) )
67 8 66 ax-mp ( ( 𝑥 ∈ ( 2om 𝐴 ) ↦ ( 𝑥 “ { 1o } ) ) ↾ 𝑆 ) = ( 𝑥𝑆 ↦ ( 𝑥 “ { 1o } ) )
68 67 2 eqtr4i ( ( 𝑥 ∈ ( 2om 𝐴 ) ↦ ( 𝑥 “ { 1o } ) ) ↾ 𝑆 ) = 𝐹
69 f1oeq1 ( ( ( 𝑥 ∈ ( 2om 𝐴 ) ↦ ( 𝑥 “ { 1o } ) ) ↾ 𝑆 ) = 𝐹 → ( ( ( 𝑥 ∈ ( 2om 𝐴 ) ↦ ( 𝑥 “ { 1o } ) ) ↾ 𝑆 ) : 𝑆1-1-onto→ ( 𝒫 𝐴 ∩ Fin ) ↔ 𝐹 : 𝑆1-1-onto→ ( 𝒫 𝐴 ∩ Fin ) ) )
70 68 69 mp1i ( 𝐴𝑉 → ( ( ( 𝑥 ∈ ( 2om 𝐴 ) ↦ ( 𝑥 “ { 1o } ) ) ↾ 𝑆 ) : 𝑆1-1-onto→ ( 𝒫 𝐴 ∩ Fin ) ↔ 𝐹 : 𝑆1-1-onto→ ( 𝒫 𝐴 ∩ Fin ) ) )
71 65 70 bitrd ( 𝐴𝑉 → ( ( ( 𝑥 ∈ ( 2om 𝐴 ) ↦ ( 𝑥 “ { 1o } ) ) ↾ 𝑆 ) : 𝑆1-1-onto→ ( ( 𝑥 ∈ ( 2om 𝐴 ) ↦ ( 𝑥 “ { 1o } ) ) “ 𝑆 ) ↔ 𝐹 : 𝑆1-1-onto→ ( 𝒫 𝐴 ∩ Fin ) ) )
72 10 71 mpbid ( 𝐴𝑉𝐹 : 𝑆1-1-onto→ ( 𝒫 𝐴 ∩ Fin ) )