Metamath Proof Explorer


Theorem pwfi2f1o

Description: The pw2f1o bijection relates finitely supported indicator functions on a two-element set to finite subsets.MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015) (Revised by AV, 14-Jun-2020)

Ref Expression
Hypotheses pwfi2f1o.s S=y2𝑜A|finSuppy
pwfi2f1o.f F=xSx-11𝑜
Assertion pwfi2f1o AVF:S1-1 onto𝒫AFin

Proof

Step Hyp Ref Expression
1 pwfi2f1o.s S=y2𝑜A|finSuppy
2 pwfi2f1o.f F=xSx-11𝑜
3 eqid x2𝑜Ax-11𝑜=x2𝑜Ax-11𝑜
4 3 pw2f1o2 AVx2𝑜Ax-11𝑜:2𝑜A1-1 onto𝒫A
5 f1of1 x2𝑜Ax-11𝑜:2𝑜A1-1 onto𝒫Ax2𝑜Ax-11𝑜:2𝑜A1-1𝒫A
6 4 5 syl AVx2𝑜Ax-11𝑜:2𝑜A1-1𝒫A
7 ssrab2 y2𝑜A|finSuppy2𝑜A
8 1 7 eqsstri S2𝑜A
9 f1ores x2𝑜Ax-11𝑜:2𝑜A1-1𝒫AS2𝑜Ax2𝑜Ax-11𝑜S:S1-1 ontox2𝑜Ax-11𝑜S
10 6 8 9 sylancl AVx2𝑜Ax-11𝑜S:S1-1 ontox2𝑜Ax-11𝑜S
11 elmapfun y2𝑜AFuny
12 id y2𝑜Ay2𝑜A
13 0ex V
14 13 a1i y2𝑜AV
15 11 12 14 3jca y2𝑜AFunyy2𝑜AV
16 15 adantl AVy2𝑜AFunyy2𝑜AV
17 funisfsupp Funyy2𝑜AVfinSuppyysuppFin
18 16 17 syl AVy2𝑜AfinSuppyysuppFin
19 14 anim2i AVy2𝑜AAVV
20 elmapi y2𝑜Ay:A2𝑜
21 20 adantl AVy2𝑜Ay:A2𝑜
22 fsuppeq AVVy:A2𝑜ysupp=y-12𝑜
23 19 21 22 sylc AVy2𝑜Aysupp=y-12𝑜
24 df-2o 2𝑜=suc1𝑜
25 df-suc suc1𝑜=1𝑜1𝑜
26 25 equncomi suc1𝑜=1𝑜1𝑜
27 24 26 eqtri 2𝑜=1𝑜1𝑜
28 df1o2 1𝑜=
29 28 eqcomi =1𝑜
30 27 29 difeq12i 2𝑜=1𝑜1𝑜1𝑜
31 difun2 1𝑜1𝑜1𝑜=1𝑜1𝑜
32 incom 1𝑜1𝑜=1𝑜1𝑜
33 1on 1𝑜On
34 33 onordi Ord1𝑜
35 orddisj Ord1𝑜1𝑜1𝑜=
36 34 35 ax-mp 1𝑜1𝑜=
37 32 36 eqtri 1𝑜1𝑜=
38 disj3 1𝑜1𝑜=1𝑜=1𝑜1𝑜
39 37 38 mpbi 1𝑜=1𝑜1𝑜
40 31 39 eqtr4i 1𝑜1𝑜1𝑜=1𝑜
41 30 40 eqtri 2𝑜=1𝑜
42 41 imaeq2i y-12𝑜=y-11𝑜
43 23 42 eqtrdi AVy2𝑜Aysupp=y-11𝑜
44 43 eleq1d AVy2𝑜AysuppFiny-11𝑜Fin
45 cnvimass y-11𝑜domy
46 45 21 fssdm AVy2𝑜Ay-11𝑜A
47 46 biantrurd AVy2𝑜Ay-11𝑜Finy-11𝑜Ay-11𝑜Fin
48 18 44 47 3bitrd AVy2𝑜AfinSuppyy-11𝑜Ay-11𝑜Fin
49 elfpw y-11𝑜𝒫AFiny-11𝑜Ay-11𝑜Fin
50 48 49 bitr4di AVy2𝑜AfinSuppyy-11𝑜𝒫AFin
51 50 rabbidva AVy2𝑜A|finSuppy=y2𝑜A|y-11𝑜𝒫AFin
52 cnveq x=yx-1=y-1
53 52 imaeq1d x=yx-11𝑜=y-11𝑜
54 53 cbvmptv x2𝑜Ax-11𝑜=y2𝑜Ay-11𝑜
55 54 mptpreima x2𝑜Ax-11𝑜-1𝒫AFin=y2𝑜A|y-11𝑜𝒫AFin
56 51 1 55 3eqtr4g AVS=x2𝑜Ax-11𝑜-1𝒫AFin
57 56 imaeq2d AVx2𝑜Ax-11𝑜S=x2𝑜Ax-11𝑜x2𝑜Ax-11𝑜-1𝒫AFin
58 f1ofo x2𝑜Ax-11𝑜:2𝑜A1-1 onto𝒫Ax2𝑜Ax-11𝑜:2𝑜Aonto𝒫A
59 4 58 syl AVx2𝑜Ax-11𝑜:2𝑜Aonto𝒫A
60 inss1 𝒫AFin𝒫A
61 foimacnv x2𝑜Ax-11𝑜:2𝑜Aonto𝒫A𝒫AFin𝒫Ax2𝑜Ax-11𝑜x2𝑜Ax-11𝑜-1𝒫AFin=𝒫AFin
62 59 60 61 sylancl AVx2𝑜Ax-11𝑜x2𝑜Ax-11𝑜-1𝒫AFin=𝒫AFin
63 57 62 eqtrd AVx2𝑜Ax-11𝑜S=𝒫AFin
64 f1oeq3 x2𝑜Ax-11𝑜S=𝒫AFinx2𝑜Ax-11𝑜S:S1-1 ontox2𝑜Ax-11𝑜Sx2𝑜Ax-11𝑜S:S1-1 onto𝒫AFin
65 63 64 syl AVx2𝑜Ax-11𝑜S:S1-1 ontox2𝑜Ax-11𝑜Sx2𝑜Ax-11𝑜S:S1-1 onto𝒫AFin
66 resmpt S2𝑜Ax2𝑜Ax-11𝑜S=xSx-11𝑜
67 8 66 ax-mp x2𝑜Ax-11𝑜S=xSx-11𝑜
68 67 2 eqtr4i x2𝑜Ax-11𝑜S=F
69 f1oeq1 x2𝑜Ax-11𝑜S=Fx2𝑜Ax-11𝑜S:S1-1 onto𝒫AFinF:S1-1 onto𝒫AFin
70 68 69 mp1i AVx2𝑜Ax-11𝑜S:S1-1 onto𝒫AFinF:S1-1 onto𝒫AFin
71 65 70 bitrd AVx2𝑜Ax-11𝑜S:S1-1 ontox2𝑜Ax-11𝑜SF:S1-1 onto𝒫AFin
72 10 71 mpbid AVF:S1-1 onto𝒫AFin