Metamath Proof Explorer


Theorem pwfi2f1o

Description: The pw2f1o bijection relates finitely supported indicator functions on a two-element set to finite subsets.MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015) (Revised by AV, 14-Jun-2020)

Ref Expression
Hypotheses pwfi2f1o.s S = y 2 𝑜 A | finSupp y
pwfi2f1o.f F = x S x -1 1 𝑜
Assertion pwfi2f1o A V F : S 1-1 onto 𝒫 A Fin

Proof

Step Hyp Ref Expression
1 pwfi2f1o.s S = y 2 𝑜 A | finSupp y
2 pwfi2f1o.f F = x S x -1 1 𝑜
3 eqid x 2 𝑜 A x -1 1 𝑜 = x 2 𝑜 A x -1 1 𝑜
4 3 pw2f1o2 A V x 2 𝑜 A x -1 1 𝑜 : 2 𝑜 A 1-1 onto 𝒫 A
5 f1of1 x 2 𝑜 A x -1 1 𝑜 : 2 𝑜 A 1-1 onto 𝒫 A x 2 𝑜 A x -1 1 𝑜 : 2 𝑜 A 1-1 𝒫 A
6 4 5 syl A V x 2 𝑜 A x -1 1 𝑜 : 2 𝑜 A 1-1 𝒫 A
7 ssrab2 y 2 𝑜 A | finSupp y 2 𝑜 A
8 1 7 eqsstri S 2 𝑜 A
9 f1ores x 2 𝑜 A x -1 1 𝑜 : 2 𝑜 A 1-1 𝒫 A S 2 𝑜 A x 2 𝑜 A x -1 1 𝑜 S : S 1-1 onto x 2 𝑜 A x -1 1 𝑜 S
10 6 8 9 sylancl A V x 2 𝑜 A x -1 1 𝑜 S : S 1-1 onto x 2 𝑜 A x -1 1 𝑜 S
11 elmapfun y 2 𝑜 A Fun y
12 id y 2 𝑜 A y 2 𝑜 A
13 0ex V
14 13 a1i y 2 𝑜 A V
15 11 12 14 3jca y 2 𝑜 A Fun y y 2 𝑜 A V
16 15 adantl A V y 2 𝑜 A Fun y y 2 𝑜 A V
17 funisfsupp Fun y y 2 𝑜 A V finSupp y y supp Fin
18 16 17 syl A V y 2 𝑜 A finSupp y y supp Fin
19 14 anim2i A V y 2 𝑜 A A V V
20 elmapi y 2 𝑜 A y : A 2 𝑜
21 20 adantl A V y 2 𝑜 A y : A 2 𝑜
22 frnsuppeq A V V y : A 2 𝑜 y supp = y -1 2 𝑜
23 19 21 22 sylc A V y 2 𝑜 A y supp = y -1 2 𝑜
24 df-2o 2 𝑜 = suc 1 𝑜
25 df-suc suc 1 𝑜 = 1 𝑜 1 𝑜
26 25 equncomi suc 1 𝑜 = 1 𝑜 1 𝑜
27 24 26 eqtri 2 𝑜 = 1 𝑜 1 𝑜
28 df1o2 1 𝑜 =
29 28 eqcomi = 1 𝑜
30 27 29 difeq12i 2 𝑜 = 1 𝑜 1 𝑜 1 𝑜
31 difun2 1 𝑜 1 𝑜 1 𝑜 = 1 𝑜 1 𝑜
32 incom 1 𝑜 1 𝑜 = 1 𝑜 1 𝑜
33 1on 1 𝑜 On
34 33 onordi Ord 1 𝑜
35 orddisj Ord 1 𝑜 1 𝑜 1 𝑜 =
36 34 35 ax-mp 1 𝑜 1 𝑜 =
37 32 36 eqtri 1 𝑜 1 𝑜 =
38 disj3 1 𝑜 1 𝑜 = 1 𝑜 = 1 𝑜 1 𝑜
39 37 38 mpbi 1 𝑜 = 1 𝑜 1 𝑜
40 31 39 eqtr4i 1 𝑜 1 𝑜 1 𝑜 = 1 𝑜
41 30 40 eqtri 2 𝑜 = 1 𝑜
42 41 imaeq2i y -1 2 𝑜 = y -1 1 𝑜
43 23 42 eqtrdi A V y 2 𝑜 A y supp = y -1 1 𝑜
44 43 eleq1d A V y 2 𝑜 A y supp Fin y -1 1 𝑜 Fin
45 cnvimass y -1 1 𝑜 dom y
46 45 21 fssdm A V y 2 𝑜 A y -1 1 𝑜 A
47 46 biantrurd A V y 2 𝑜 A y -1 1 𝑜 Fin y -1 1 𝑜 A y -1 1 𝑜 Fin
48 18 44 47 3bitrd A V y 2 𝑜 A finSupp y y -1 1 𝑜 A y -1 1 𝑜 Fin
49 elfpw y -1 1 𝑜 𝒫 A Fin y -1 1 𝑜 A y -1 1 𝑜 Fin
50 48 49 bitr4di A V y 2 𝑜 A finSupp y y -1 1 𝑜 𝒫 A Fin
51 50 rabbidva A V y 2 𝑜 A | finSupp y = y 2 𝑜 A | y -1 1 𝑜 𝒫 A Fin
52 cnveq x = y x -1 = y -1
53 52 imaeq1d x = y x -1 1 𝑜 = y -1 1 𝑜
54 53 cbvmptv x 2 𝑜 A x -1 1 𝑜 = y 2 𝑜 A y -1 1 𝑜
55 54 mptpreima x 2 𝑜 A x -1 1 𝑜 -1 𝒫 A Fin = y 2 𝑜 A | y -1 1 𝑜 𝒫 A Fin
56 51 1 55 3eqtr4g A V S = x 2 𝑜 A x -1 1 𝑜 -1 𝒫 A Fin
57 56 imaeq2d A V x 2 𝑜 A x -1 1 𝑜 S = x 2 𝑜 A x -1 1 𝑜 x 2 𝑜 A x -1 1 𝑜 -1 𝒫 A Fin
58 f1ofo x 2 𝑜 A x -1 1 𝑜 : 2 𝑜 A 1-1 onto 𝒫 A x 2 𝑜 A x -1 1 𝑜 : 2 𝑜 A onto 𝒫 A
59 4 58 syl A V x 2 𝑜 A x -1 1 𝑜 : 2 𝑜 A onto 𝒫 A
60 inss1 𝒫 A Fin 𝒫 A
61 foimacnv x 2 𝑜 A x -1 1 𝑜 : 2 𝑜 A onto 𝒫 A 𝒫 A Fin 𝒫 A x 2 𝑜 A x -1 1 𝑜 x 2 𝑜 A x -1 1 𝑜 -1 𝒫 A Fin = 𝒫 A Fin
62 59 60 61 sylancl A V x 2 𝑜 A x -1 1 𝑜 x 2 𝑜 A x -1 1 𝑜 -1 𝒫 A Fin = 𝒫 A Fin
63 57 62 eqtrd A V x 2 𝑜 A x -1 1 𝑜 S = 𝒫 A Fin
64 f1oeq3 x 2 𝑜 A x -1 1 𝑜 S = 𝒫 A Fin x 2 𝑜 A x -1 1 𝑜 S : S 1-1 onto x 2 𝑜 A x -1 1 𝑜 S x 2 𝑜 A x -1 1 𝑜 S : S 1-1 onto 𝒫 A Fin
65 63 64 syl A V x 2 𝑜 A x -1 1 𝑜 S : S 1-1 onto x 2 𝑜 A x -1 1 𝑜 S x 2 𝑜 A x -1 1 𝑜 S : S 1-1 onto 𝒫 A Fin
66 resmpt S 2 𝑜 A x 2 𝑜 A x -1 1 𝑜 S = x S x -1 1 𝑜
67 8 66 ax-mp x 2 𝑜 A x -1 1 𝑜 S = x S x -1 1 𝑜
68 67 2 eqtr4i x 2 𝑜 A x -1 1 𝑜 S = F
69 f1oeq1 x 2 𝑜 A x -1 1 𝑜 S = F x 2 𝑜 A x -1 1 𝑜 S : S 1-1 onto 𝒫 A Fin F : S 1-1 onto 𝒫 A Fin
70 68 69 mp1i A V x 2 𝑜 A x -1 1 𝑜 S : S 1-1 onto 𝒫 A Fin F : S 1-1 onto 𝒫 A Fin
71 65 70 bitrd A V x 2 𝑜 A x -1 1 𝑜 S : S 1-1 onto x 2 𝑜 A x -1 1 𝑜 S F : S 1-1 onto 𝒫 A Fin
72 10 71 mpbid A V F : S 1-1 onto 𝒫 A Fin