Metamath Proof Explorer


Theorem pwinfig

Description: The powerclass of an infinite set is an infinite set, and vice-versa. Here B is a class which is closed under both the union and the powerclass operations and which may have infinite sets as members. (Contributed by RP, 21-Mar-2020)

Ref Expression
Assertion pwinfig
|- ( A. x e. B ( U. x e. B /\ ~P x e. B ) -> ( A e. ( B \ Fin ) <-> ~P A e. ( B \ Fin ) ) )

Proof

Step Hyp Ref Expression
1 pwelg
 |-  ( A. x e. B ( U. x e. B /\ ~P x e. B ) -> ( A e. B <-> ~P A e. B ) )
2 pwfi
 |-  ( A e. Fin <-> ~P A e. Fin )
3 2 notbii
 |-  ( -. A e. Fin <-> -. ~P A e. Fin )
4 3 a1i
 |-  ( A. x e. B ( U. x e. B /\ ~P x e. B ) -> ( -. A e. Fin <-> -. ~P A e. Fin ) )
5 1 4 anbi12d
 |-  ( A. x e. B ( U. x e. B /\ ~P x e. B ) -> ( ( A e. B /\ -. A e. Fin ) <-> ( ~P A e. B /\ -. ~P A e. Fin ) ) )
6 eldif
 |-  ( A e. ( B \ Fin ) <-> ( A e. B /\ -. A e. Fin ) )
7 eldif
 |-  ( ~P A e. ( B \ Fin ) <-> ( ~P A e. B /\ -. ~P A e. Fin ) )
8 5 6 7 3bitr4g
 |-  ( A. x e. B ( U. x e. B /\ ~P x e. B ) -> ( A e. ( B \ Fin ) <-> ~P A e. ( B \ Fin ) ) )