Metamath Proof Explorer


Theorem pwinfig

Description: The powerclass of an infinite set is an infinite set, and vice-versa. Here B is a class which is closed under both the union and the powerclass operations and which may have infinite sets as members. (Contributed by RP, 21-Mar-2020)

Ref Expression
Assertion pwinfig ( ∀ 𝑥𝐵 ( 𝑥𝐵 ∧ 𝒫 𝑥𝐵 ) → ( 𝐴 ∈ ( 𝐵 ∖ Fin ) ↔ 𝒫 𝐴 ∈ ( 𝐵 ∖ Fin ) ) )

Proof

Step Hyp Ref Expression
1 pwelg ( ∀ 𝑥𝐵 ( 𝑥𝐵 ∧ 𝒫 𝑥𝐵 ) → ( 𝐴𝐵 ↔ 𝒫 𝐴𝐵 ) )
2 pwfi ( 𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin )
3 2 notbii ( ¬ 𝐴 ∈ Fin ↔ ¬ 𝒫 𝐴 ∈ Fin )
4 3 a1i ( ∀ 𝑥𝐵 ( 𝑥𝐵 ∧ 𝒫 𝑥𝐵 ) → ( ¬ 𝐴 ∈ Fin ↔ ¬ 𝒫 𝐴 ∈ Fin ) )
5 1 4 anbi12d ( ∀ 𝑥𝐵 ( 𝑥𝐵 ∧ 𝒫 𝑥𝐵 ) → ( ( 𝐴𝐵 ∧ ¬ 𝐴 ∈ Fin ) ↔ ( 𝒫 𝐴𝐵 ∧ ¬ 𝒫 𝐴 ∈ Fin ) ) )
6 eldif ( 𝐴 ∈ ( 𝐵 ∖ Fin ) ↔ ( 𝐴𝐵 ∧ ¬ 𝐴 ∈ Fin ) )
7 eldif ( 𝒫 𝐴 ∈ ( 𝐵 ∖ Fin ) ↔ ( 𝒫 𝐴𝐵 ∧ ¬ 𝒫 𝐴 ∈ Fin ) )
8 5 6 7 3bitr4g ( ∀ 𝑥𝐵 ( 𝑥𝐵 ∧ 𝒫 𝑥𝐵 ) → ( 𝐴 ∈ ( 𝐵 ∖ Fin ) ↔ 𝒫 𝐴 ∈ ( 𝐵 ∖ Fin ) ) )