Metamath Proof Explorer


Theorem pwinfi2

Description: The powerclass of an infinite set is an infinite set, and vice-versa. Here U is a weak universe. (Contributed by RP, 21-Mar-2020)

Ref Expression
Assertion pwinfi2 ( 𝑈 ∈ WUni → ( 𝐴 ∈ ( 𝑈 ∖ Fin ) ↔ 𝒫 𝐴 ∈ ( 𝑈 ∖ Fin ) ) )

Proof

Step Hyp Ref Expression
1 iswun ( 𝑈 ∈ WUni → ( 𝑈 ∈ WUni ↔ ( Tr 𝑈𝑈 ≠ ∅ ∧ ∀ 𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀ 𝑦𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) ) ) )
2 1 ibi ( 𝑈 ∈ WUni → ( Tr 𝑈𝑈 ≠ ∅ ∧ ∀ 𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀ 𝑦𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) ) )
3 3simpa ( ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀ 𝑦𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) → ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ) )
4 3 ralimi ( ∀ 𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀ 𝑦𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) → ∀ 𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ) )
5 4 3ad2ant3 ( ( Tr 𝑈𝑈 ≠ ∅ ∧ ∀ 𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀ 𝑦𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) ) → ∀ 𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ) )
6 pwinfig ( ∀ 𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ) → ( 𝐴 ∈ ( 𝑈 ∖ Fin ) ↔ 𝒫 𝐴 ∈ ( 𝑈 ∖ Fin ) ) )
7 2 5 6 3syl ( 𝑈 ∈ WUni → ( 𝐴 ∈ ( 𝑈 ∖ Fin ) ↔ 𝒫 𝐴 ∈ ( 𝑈 ∖ Fin ) ) )