Metamath Proof Explorer


Theorem pwinfi3

Description: The powerclass of an infinite set is an infinite set, and vice-versa. Here T is a transitive Tarski universe. (Contributed by RP, 21-Mar-2020)

Ref Expression
Assertion pwinfi3 ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) → ( 𝐴 ∈ ( 𝑇 ∖ Fin ) ↔ 𝒫 𝐴 ∈ ( 𝑇 ∖ Fin ) ) )

Proof

Step Hyp Ref Expression
1 tskuni ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇𝑥𝑇 ) → 𝑥𝑇 )
2 1 3expia ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) → ( 𝑥𝑇 𝑥𝑇 ) )
3 tskpw ( ( 𝑇 ∈ Tarski ∧ 𝑥𝑇 ) → 𝒫 𝑥𝑇 )
4 3 ex ( 𝑇 ∈ Tarski → ( 𝑥𝑇 → 𝒫 𝑥𝑇 ) )
5 4 adantr ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) → ( 𝑥𝑇 → 𝒫 𝑥𝑇 ) )
6 2 5 jcad ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) → ( 𝑥𝑇 → ( 𝑥𝑇 ∧ 𝒫 𝑥𝑇 ) ) )
7 6 ralrimiv ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) → ∀ 𝑥𝑇 ( 𝑥𝑇 ∧ 𝒫 𝑥𝑇 ) )
8 pwinfig ( ∀ 𝑥𝑇 ( 𝑥𝑇 ∧ 𝒫 𝑥𝑇 ) → ( 𝐴 ∈ ( 𝑇 ∖ Fin ) ↔ 𝒫 𝐴 ∈ ( 𝑇 ∖ Fin ) ) )
9 7 8 syl ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) → ( 𝐴 ∈ ( 𝑇 ∖ Fin ) ↔ 𝒫 𝐴 ∈ ( 𝑇 ∖ Fin ) ) )