| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tskuni |
⊢ ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑥 ∈ 𝑇 ) → ∪ 𝑥 ∈ 𝑇 ) |
| 2 |
1
|
3expia |
⊢ ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) → ( 𝑥 ∈ 𝑇 → ∪ 𝑥 ∈ 𝑇 ) ) |
| 3 |
|
tskpw |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇 ) → 𝒫 𝑥 ∈ 𝑇 ) |
| 4 |
3
|
ex |
⊢ ( 𝑇 ∈ Tarski → ( 𝑥 ∈ 𝑇 → 𝒫 𝑥 ∈ 𝑇 ) ) |
| 5 |
4
|
adantr |
⊢ ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) → ( 𝑥 ∈ 𝑇 → 𝒫 𝑥 ∈ 𝑇 ) ) |
| 6 |
2 5
|
jcad |
⊢ ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) → ( 𝑥 ∈ 𝑇 → ( ∪ 𝑥 ∈ 𝑇 ∧ 𝒫 𝑥 ∈ 𝑇 ) ) ) |
| 7 |
6
|
ralrimiv |
⊢ ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) → ∀ 𝑥 ∈ 𝑇 ( ∪ 𝑥 ∈ 𝑇 ∧ 𝒫 𝑥 ∈ 𝑇 ) ) |
| 8 |
|
pwinfig |
⊢ ( ∀ 𝑥 ∈ 𝑇 ( ∪ 𝑥 ∈ 𝑇 ∧ 𝒫 𝑥 ∈ 𝑇 ) → ( 𝐴 ∈ ( 𝑇 ∖ Fin ) ↔ 𝒫 𝐴 ∈ ( 𝑇 ∖ Fin ) ) ) |
| 9 |
7 8
|
syl |
⊢ ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) → ( 𝐴 ∈ ( 𝑇 ∖ Fin ) ↔ 𝒫 𝐴 ∈ ( 𝑇 ∖ Fin ) ) ) |