Metamath Proof Explorer


Theorem pwinfi3

Description: The powerclass of an infinite set is an infinite set, and vice-versa. Here T is a transitive Tarski universe. (Contributed by RP, 21-Mar-2020)

Ref Expression
Assertion pwinfi3 T Tarski Tr T A T Fin 𝒫 A T Fin

Proof

Step Hyp Ref Expression
1 tskuni T Tarski Tr T x T x T
2 1 3expia T Tarski Tr T x T x T
3 tskpw T Tarski x T 𝒫 x T
4 3 ex T Tarski x T 𝒫 x T
5 4 adantr T Tarski Tr T x T 𝒫 x T
6 2 5 jcad T Tarski Tr T x T x T 𝒫 x T
7 6 ralrimiv T Tarski Tr T x T x T 𝒫 x T
8 pwinfig x T x T 𝒫 x T A T Fin 𝒫 A T Fin
9 7 8 syl T Tarski Tr T A T Fin 𝒫 A T Fin