Metamath Proof Explorer


Theorem tskuni

Description: The union of an element of a transitive Tarski class is in the set. (Contributed by Mario Carneiro, 22-Jun-2013)

Ref Expression
Assertion tskuni TTarskiTrTATAT

Proof

Step Hyp Ref Expression
1 tsksdom TTarskiATAT
2 cardidg TTarskicardTT
3 2 ensymd TTarskiTcardT
4 3 adantr TTarskiATTcardT
5 sdomentr ATTcardTAcardT
6 1 4 5 syl2anc TTarskiATAcardT
7 eqid xAfx=xAfx
8 7 rnmpt ranxAfx=z|xAz=fx
9 cardon cardTOn
10 sdomdom AcardTAcardT
11 ondomen cardTOnAcardTAdomcard
12 9 10 11 sylancr AcardTAdomcard
13 12 adantl ATAcardTAdomcard
14 vex fV
15 14 imaex fxV
16 15 7 fnmpti xAfxFnA
17 dffn4 xAfxFnAxAfx:AontoranxAfx
18 16 17 mpbi xAfx:AontoranxAfx
19 fodomnum AdomcardxAfx:AontoranxAfxranxAfxA
20 13 18 19 mpisyl ATAcardTranxAfxA
21 8 20 eqbrtrrid ATAcardTz|xAz=fxA
22 domsdomtr z|xAz=fxAAcardTz|xAz=fxcardT
23 21 22 sylancom ATAcardTz|xAz=fxcardT
24 23 adantll TTarskiATAcardTz|xAz=fxcardT
25 6 24 mpdan TTarskiATz|xAz=fxcardT
26 ne0i ATT
27 tskcard TTarskiTcardTInacc
28 26 27 sylan2 TTarskiATcardTInacc
29 elina cardTInacccardTcfcardT=cardTxcardT𝒫xcardT
30 29 simp2bi cardTInacccfcardT=cardT
31 28 30 syl TTarskiATcfcardT=cardT
32 25 31 breqtrrd TTarskiATz|xAz=fxcfcardT
33 32 3adant2 TTarskiTrTATz|xAz=fxcfcardT
34 33 adantr TTarskiTrTATf:A1-1 ontocardTz|xAz=fxcfcardT
35 28 3adant2 TTarskiTrTATcardTInacc
36 35 adantr TTarskiTrTATf:A1-1 ontocardTcardTInacc
37 inawina cardTInacccardTInacc𝑤
38 winalim cardTInacc𝑤LimcardT
39 36 37 38 3syl TTarskiTrTATf:A1-1 ontocardTLimcardT
40 vex yV
41 eqeq1 z=yz=fxy=fx
42 41 rexbidv z=yxAz=fxxAy=fx
43 40 42 elab yz|xAz=fxxAy=fx
44 imassrn fxranf
45 f1ofo f:A1-1 ontocardTf:AontocardT
46 forn f:AontocardTranf=cardT
47 45 46 syl f:A1-1 ontocardTranf=cardT
48 44 47 sseqtrid f:A1-1 ontocardTfxcardT
49 48 ad2antlr TTarskiTrTATf:A1-1 ontocardTxAfxcardT
50 f1of1 f:A1-1 ontocardTf:A1-1cardT
51 elssuni xAxA
52 vex xV
53 52 f1imaen f:A1-1cardTxAfxx
54 50 51 53 syl2an f:A1-1 ontocardTxAfxx
55 54 adantll TTarskiTrTATf:A1-1 ontocardTxAfxx
56 simpl1 TTarskiTrTATxATTarski
57 trss TrTATAT
58 57 imp TrTATAT
59 58 3adant1 TTarskiTrTATAT
60 59 sselda TTarskiTrTATxAxT
61 tsksdom TTarskixTxT
62 56 60 61 syl2anc TTarskiTrTATxAxT
63 56 3 syl TTarskiTrTATxATcardT
64 sdomentr xTTcardTxcardT
65 62 63 64 syl2anc TTarskiTrTATxAxcardT
66 65 adantlr TTarskiTrTATf:A1-1 ontocardTxAxcardT
67 ensdomtr fxxxcardTfxcardT
68 55 66 67 syl2anc TTarskiTrTATf:A1-1 ontocardTxAfxcardT
69 36 30 syl TTarskiTrTATf:A1-1 ontocardTcfcardT=cardT
70 69 adantr TTarskiTrTATf:A1-1 ontocardTxAcfcardT=cardT
71 68 70 breqtrrd TTarskiTrTATf:A1-1 ontocardTxAfxcfcardT
72 sseq1 y=fxycardTfxcardT
73 breq1 y=fxycfcardTfxcfcardT
74 72 73 anbi12d y=fxycardTycfcardTfxcardTfxcfcardT
75 74 biimprcd fxcardTfxcfcardTy=fxycardTycfcardT
76 49 71 75 syl2anc TTarskiTrTATf:A1-1 ontocardTxAy=fxycardTycfcardT
77 76 rexlimdva TTarskiTrTATf:A1-1 ontocardTxAy=fxycardTycfcardT
78 43 77 biimtrid TTarskiTrTATf:A1-1 ontocardTyz|xAz=fxycardTycfcardT
79 78 ralrimiv TTarskiTrTATf:A1-1 ontocardTyz|xAz=fxycardTycfcardT
80 fvex cardTV
81 80 cfslb2n LimcardTyz|xAz=fxycardTycfcardTz|xAz=fxcfcardTz|xAz=fxcardT
82 39 79 81 syl2anc TTarskiTrTATf:A1-1 ontocardTz|xAz=fxcfcardTz|xAz=fxcardT
83 34 82 mpd TTarskiTrTATf:A1-1 ontocardTz|xAz=fxcardT
84 15 dfiun2 xAfx=z|xAz=fx
85 48 ralrimivw f:A1-1 ontocardTxAfxcardT
86 iunss xAfxcardTxAfxcardT
87 85 86 sylibr f:A1-1 ontocardTxAfxcardT
88 fof f:AontocardTf:AcardT
89 foelrn f:AontocardTycardTzAy=fz
90 89 ex f:AontocardTycardTzAy=fz
91 eluni2 zAxAzx
92 nfv xf:AcardT
93 nfiu1 _xxAfx
94 93 nfel2 xfzxAfx
95 ssiun2 xAfxxAfx
96 95 3ad2ant2 f:AcardTxAzxfxxAfx
97 ffn f:AcardTfFnA
98 97 3ad2ant1 f:AcardTxAzxfFnA
99 51 3ad2ant2 f:AcardTxAzxxA
100 simp3 f:AcardTxAzxzx
101 fnfvima fFnAxAzxfzfx
102 98 99 100 101 syl3anc f:AcardTxAzxfzfx
103 96 102 sseldd f:AcardTxAzxfzxAfx
104 103 3exp f:AcardTxAzxfzxAfx
105 92 94 104 rexlimd f:AcardTxAzxfzxAfx
106 91 105 biimtrid f:AcardTzAfzxAfx
107 eleq1a fzxAfxy=fzyxAfx
108 106 107 syl6 f:AcardTzAy=fzyxAfx
109 108 rexlimdv f:AcardTzAy=fzyxAfx
110 88 90 109 sylsyld f:AontocardTycardTyxAfx
111 45 110 syl f:A1-1 ontocardTycardTyxAfx
112 111 ssrdv f:A1-1 ontocardTcardTxAfx
113 87 112 eqssd f:A1-1 ontocardTxAfx=cardT
114 84 113 eqtr3id f:A1-1 ontocardTz|xAz=fx=cardT
115 114 necon3ai z|xAz=fxcardT¬f:A1-1 ontocardT
116 83 115 syl TTarskiTrTATf:A1-1 ontocardT¬f:A1-1 ontocardT
117 116 pm2.01da TTarskiTrTAT¬f:A1-1 ontocardT
118 117 nexdv TTarskiTrTAT¬ff:A1-1 ontocardT
119 entr ATTcardTAcardT
120 3 119 sylan2 ATTTarskiAcardT
121 bren AcardTff:A1-1 ontocardT
122 120 121 sylib ATTTarskiff:A1-1 ontocardT
123 122 expcom TTarskiATff:A1-1 ontocardT
124 123 3ad2ant1 TTarskiTrTATATff:A1-1 ontocardT
125 118 124 mtod TTarskiTrTAT¬AT
126 uniss ATAT
127 df-tr TrTTT
128 127 biimpi TrTTT
129 126 128 sylan9ss ATTrTAT
130 129 expcom TrTATAT
131 57 130 syld TrTATAT
132 131 imp TrTATAT
133 tsken TTarskiATATAT
134 132 133 sylan2 TTarskiTrTATATAT
135 134 3impb TTarskiTrTATATAT
136 135 ord TTarskiTrTAT¬ATAT
137 125 136 mpd TTarskiTrTATAT