Metamath Proof Explorer


Theorem cfslb2n

Description: Any small collection of small subsets of A cannot have union A , where "small" means smaller than the cofinality. This is a stronger version of cfslb . This is a common application of cofinality: under AC, ( aleph1 ) is regular, so it is not a countable union of countable sets. (Contributed by Mario Carneiro, 24-Jun-2013)

Ref Expression
Hypothesis cfslb.1 A V
Assertion cfslb2n Lim A x B x A x cf A B cf A B A

Proof

Step Hyp Ref Expression
1 cfslb.1 A V
2 limord Lim A Ord A
3 ordsson Ord A A On
4 sstr x A A On x On
5 4 expcom A On x A x On
6 2 3 5 3syl Lim A x A x On
7 onsucuni x On x suc x
8 6 7 syl6 Lim A x A x suc x
9 8 adantrd Lim A x A x cf A x suc x
10 9 ralimdv Lim A x B x A x cf A x B x suc x
11 uniiun B = x B x
12 ss2iun x B x suc x x B x x B suc x
13 11 12 eqsstrid x B x suc x B x B suc x
14 10 13 syl6 Lim A x B x A x cf A B x B suc x
15 14 imp Lim A x B x A x cf A B x B suc x
16 1 cfslbn Lim A x A x cf A x A
17 16 3expib Lim A x A x cf A x A
18 ordsucss Ord A x A suc x A
19 2 17 18 sylsyld Lim A x A x cf A suc x A
20 19 ralimdv Lim A x B x A x cf A x B suc x A
21 iunss x B suc x A x B suc x A
22 20 21 syl6ibr Lim A x B x A x cf A x B suc x A
23 22 imp Lim A x B x A x cf A x B suc x A
24 sseq1 B = A B x B suc x A x B suc x
25 eqss x B suc x = A x B suc x A A x B suc x
26 25 simplbi2com A x B suc x x B suc x A x B suc x = A
27 24 26 syl6bi B = A B x B suc x x B suc x A x B suc x = A
28 27 com3l B x B suc x x B suc x A B = A x B suc x = A
29 15 23 28 sylc Lim A x B x A x cf A B = A x B suc x = A
30 limsuc Lim A x A suc x A
31 17 30 sylibd Lim A x A x cf A suc x A
32 31 ralimdv Lim A x B x A x cf A x B suc x A
33 32 imp Lim A x B x A x cf A x B suc x A
34 r19.29 x B suc x A x B y = suc x x B suc x A y = suc x
35 eleq1 y = suc x y A suc x A
36 35 biimparc suc x A y = suc x y A
37 36 rexlimivw x B suc x A y = suc x y A
38 34 37 syl x B suc x A x B y = suc x y A
39 38 ex x B suc x A x B y = suc x y A
40 33 39 syl Lim A x B x A x cf A x B y = suc x y A
41 40 abssdv Lim A x B x A x cf A y | x B y = suc x A
42 vuniex x V
43 42 sucex suc x V
44 43 dfiun2 x B suc x = y | x B y = suc x
45 44 eqeq1i x B suc x = A y | x B y = suc x = A
46 1 cfslb Lim A y | x B y = suc x A y | x B y = suc x = A cf A y | x B y = suc x
47 46 3expia Lim A y | x B y = suc x A y | x B y = suc x = A cf A y | x B y = suc x
48 45 47 syl5bi Lim A y | x B y = suc x A x B suc x = A cf A y | x B y = suc x
49 41 48 syldan Lim A x B x A x cf A x B suc x = A cf A y | x B y = suc x
50 eqid x B suc x = x B suc x
51 50 rnmpt ran x B suc x = y | x B y = suc x
52 43 50 fnmpti x B suc x Fn B
53 dffn4 x B suc x Fn B x B suc x : B onto ran x B suc x
54 52 53 mpbi x B suc x : B onto ran x B suc x
55 relsdom Rel
56 55 brrelex1i B cf A B V
57 breq1 y = B y cf A B cf A
58 foeq2 y = B x B suc x : y onto ran x B suc x x B suc x : B onto ran x B suc x
59 breq2 y = B ran x B suc x y ran x B suc x B
60 58 59 imbi12d y = B x B suc x : y onto ran x B suc x ran x B suc x y x B suc x : B onto ran x B suc x ran x B suc x B
61 57 60 imbi12d y = B y cf A x B suc x : y onto ran x B suc x ran x B suc x y B cf A x B suc x : B onto ran x B suc x ran x B suc x B
62 cfon cf A On
63 sdomdom y cf A y cf A
64 ondomen cf A On y cf A y dom card
65 62 63 64 sylancr y cf A y dom card
66 fodomnum y dom card x B suc x : y onto ran x B suc x ran x B suc x y
67 65 66 syl y cf A x B suc x : y onto ran x B suc x ran x B suc x y
68 61 67 vtoclg B V B cf A x B suc x : B onto ran x B suc x ran x B suc x B
69 56 68 mpcom B cf A x B suc x : B onto ran x B suc x ran x B suc x B
70 54 69 mpi B cf A ran x B suc x B
71 51 70 eqbrtrrid B cf A y | x B y = suc x B
72 domtr cf A y | x B y = suc x y | x B y = suc x B cf A B
73 71 72 sylan2 cf A y | x B y = suc x B cf A cf A B
74 domnsym cf A B ¬ B cf A
75 73 74 syl cf A y | x B y = suc x B cf A ¬ B cf A
76 75 pm2.01da cf A y | x B y = suc x ¬ B cf A
77 76 a1i Lim A x B x A x cf A cf A y | x B y = suc x ¬ B cf A
78 29 49 77 3syld Lim A x B x A x cf A B = A ¬ B cf A
79 78 necon2ad Lim A x B x A x cf A B cf A B A