Metamath Proof Explorer


Theorem cfslbn

Description: Any subset of A smaller than its cofinality has union less than A . (This is the contrapositive to cfslb .) (Contributed by Mario Carneiro, 24-Jun-2013)

Ref Expression
Hypothesis cfslb.1 AV
Assertion cfslbn LimABABcfABA

Proof

Step Hyp Ref Expression
1 cfslb.1 AV
2 uniss BABA
3 limuni LimAA=A
4 3 sseq2d LimABABA
5 2 4 imbitrrid LimABABA
6 5 imp LimABABA
7 limord LimAOrdA
8 ordsson OrdAAOn
9 7 8 syl LimAAOn
10 sstr2 BAAOnBOn
11 9 10 syl5com LimABABOn
12 ssorduni BOnOrdB
13 11 12 syl6 LimABAOrdB
14 13 7 jctird LimABAOrdBOrdA
15 ordsseleq OrdBOrdABABAB=A
16 14 15 syl6 LimABABABAB=A
17 16 imp LimABABABAB=A
18 6 17 mpbid LimABABAB=A
19 18 ord LimABA¬BAB=A
20 1 cfslb LimABAB=AcfAB
21 domnsym cfAB¬BcfA
22 20 21 syl LimABAB=A¬BcfA
23 22 3expia LimABAB=A¬BcfA
24 19 23 syld LimABA¬BA¬BcfA
25 24 con4d LimABABcfABA
26 25 3impia LimABABcfABA