Metamath Proof Explorer


Theorem cfslb

Description: Any cofinal subset of A is at least as large as ( cfA ) . (Contributed by Mario Carneiro, 24-Jun-2013)

Ref Expression
Hypothesis cfslb.1 AV
Assertion cfslb LimABAB=AcfAB

Proof

Step Hyp Ref Expression
1 cfslb.1 AV
2 fvex cardBV
3 ssid cardBcardB
4 1 ssex BABV
5 4 ad2antrr BAB=AcardBcardBBV
6 velpw x𝒫AxA
7 sseq1 x=BxABA
8 6 7 bitrid x=Bx𝒫ABA
9 unieq x=Bx=B
10 9 eqeq1d x=Bx=AB=A
11 8 10 anbi12d x=Bx𝒫Ax=ABAB=A
12 fveq2 x=Bcardx=cardB
13 12 sseq1d x=BcardxcardBcardBcardB
14 11 13 anbi12d x=Bx𝒫Ax=AcardxcardBBAB=AcardBcardB
15 14 spcegv BVBAB=AcardBcardBxx𝒫Ax=AcardxcardB
16 5 15 mpcom BAB=AcardBcardBxx𝒫Ax=AcardxcardB
17 df-rex xx𝒫A|x=AcardxcardBxxx𝒫A|x=AcardxcardB
18 rabid xx𝒫A|x=Ax𝒫Ax=A
19 18 anbi1i xx𝒫A|x=AcardxcardBx𝒫Ax=AcardxcardB
20 19 exbii xxx𝒫A|x=AcardxcardBxx𝒫Ax=AcardxcardB
21 17 20 bitri xx𝒫A|x=AcardxcardBxx𝒫Ax=AcardxcardB
22 16 21 sylibr BAB=AcardBcardBxx𝒫A|x=AcardxcardB
23 3 22 mpan2 BAB=Axx𝒫A|x=AcardxcardB
24 iinss xx𝒫A|x=AcardxcardBxx𝒫A|x=AcardxcardB
25 23 24 syl BAB=Axx𝒫A|x=AcardxcardB
26 1 cflim3 LimAcfA=xx𝒫A|x=Acardx
27 26 sseq1d LimAcfAcardBxx𝒫A|x=AcardxcardB
28 25 27 imbitrrid LimABAB=AcfAcardB
29 28 3impib LimABAB=AcfAcardB
30 ssdomg cardBVcfAcardBcfAcardB
31 2 29 30 mpsyl LimABAB=AcfAcardB
32 limord LimAOrdA
33 ordsson OrdAAOn
34 32 33 syl LimAAOn
35 sstr2 BAAOnBOn
36 34 35 mpan9 LimABABOn
37 onssnum BVBOnBdomcard
38 4 36 37 syl2an2 LimABABdomcard
39 cardid2 BdomcardcardBB
40 38 39 syl LimABAcardBB
41 40 3adant3 LimABAB=AcardBB
42 domentr cfAcardBcardBBcfAB
43 31 41 42 syl2anc LimABAB=AcfAB