| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tsksdom |
|- ( ( T e. Tarski /\ A e. T ) -> A ~< T ) |
| 2 |
|
cardidg |
|- ( T e. Tarski -> ( card ` T ) ~~ T ) |
| 3 |
2
|
ensymd |
|- ( T e. Tarski -> T ~~ ( card ` T ) ) |
| 4 |
3
|
adantr |
|- ( ( T e. Tarski /\ A e. T ) -> T ~~ ( card ` T ) ) |
| 5 |
|
sdomentr |
|- ( ( A ~< T /\ T ~~ ( card ` T ) ) -> A ~< ( card ` T ) ) |
| 6 |
1 4 5
|
syl2anc |
|- ( ( T e. Tarski /\ A e. T ) -> A ~< ( card ` T ) ) |
| 7 |
|
eqid |
|- ( x e. A |-> ( f " x ) ) = ( x e. A |-> ( f " x ) ) |
| 8 |
7
|
rnmpt |
|- ran ( x e. A |-> ( f " x ) ) = { z | E. x e. A z = ( f " x ) } |
| 9 |
|
cardon |
|- ( card ` T ) e. On |
| 10 |
|
sdomdom |
|- ( A ~< ( card ` T ) -> A ~<_ ( card ` T ) ) |
| 11 |
|
ondomen |
|- ( ( ( card ` T ) e. On /\ A ~<_ ( card ` T ) ) -> A e. dom card ) |
| 12 |
9 10 11
|
sylancr |
|- ( A ~< ( card ` T ) -> A e. dom card ) |
| 13 |
12
|
adantl |
|- ( ( A e. T /\ A ~< ( card ` T ) ) -> A e. dom card ) |
| 14 |
|
vex |
|- f e. _V |
| 15 |
14
|
imaex |
|- ( f " x ) e. _V |
| 16 |
15 7
|
fnmpti |
|- ( x e. A |-> ( f " x ) ) Fn A |
| 17 |
|
dffn4 |
|- ( ( x e. A |-> ( f " x ) ) Fn A <-> ( x e. A |-> ( f " x ) ) : A -onto-> ran ( x e. A |-> ( f " x ) ) ) |
| 18 |
16 17
|
mpbi |
|- ( x e. A |-> ( f " x ) ) : A -onto-> ran ( x e. A |-> ( f " x ) ) |
| 19 |
|
fodomnum |
|- ( A e. dom card -> ( ( x e. A |-> ( f " x ) ) : A -onto-> ran ( x e. A |-> ( f " x ) ) -> ran ( x e. A |-> ( f " x ) ) ~<_ A ) ) |
| 20 |
13 18 19
|
mpisyl |
|- ( ( A e. T /\ A ~< ( card ` T ) ) -> ran ( x e. A |-> ( f " x ) ) ~<_ A ) |
| 21 |
8 20
|
eqbrtrrid |
|- ( ( A e. T /\ A ~< ( card ` T ) ) -> { z | E. x e. A z = ( f " x ) } ~<_ A ) |
| 22 |
|
domsdomtr |
|- ( ( { z | E. x e. A z = ( f " x ) } ~<_ A /\ A ~< ( card ` T ) ) -> { z | E. x e. A z = ( f " x ) } ~< ( card ` T ) ) |
| 23 |
21 22
|
sylancom |
|- ( ( A e. T /\ A ~< ( card ` T ) ) -> { z | E. x e. A z = ( f " x ) } ~< ( card ` T ) ) |
| 24 |
23
|
adantll |
|- ( ( ( T e. Tarski /\ A e. T ) /\ A ~< ( card ` T ) ) -> { z | E. x e. A z = ( f " x ) } ~< ( card ` T ) ) |
| 25 |
6 24
|
mpdan |
|- ( ( T e. Tarski /\ A e. T ) -> { z | E. x e. A z = ( f " x ) } ~< ( card ` T ) ) |
| 26 |
|
ne0i |
|- ( A e. T -> T =/= (/) ) |
| 27 |
|
tskcard |
|- ( ( T e. Tarski /\ T =/= (/) ) -> ( card ` T ) e. Inacc ) |
| 28 |
26 27
|
sylan2 |
|- ( ( T e. Tarski /\ A e. T ) -> ( card ` T ) e. Inacc ) |
| 29 |
|
elina |
|- ( ( card ` T ) e. Inacc <-> ( ( card ` T ) =/= (/) /\ ( cf ` ( card ` T ) ) = ( card ` T ) /\ A. x e. ( card ` T ) ~P x ~< ( card ` T ) ) ) |
| 30 |
29
|
simp2bi |
|- ( ( card ` T ) e. Inacc -> ( cf ` ( card ` T ) ) = ( card ` T ) ) |
| 31 |
28 30
|
syl |
|- ( ( T e. Tarski /\ A e. T ) -> ( cf ` ( card ` T ) ) = ( card ` T ) ) |
| 32 |
25 31
|
breqtrrd |
|- ( ( T e. Tarski /\ A e. T ) -> { z | E. x e. A z = ( f " x ) } ~< ( cf ` ( card ` T ) ) ) |
| 33 |
32
|
3adant2 |
|- ( ( T e. Tarski /\ Tr T /\ A e. T ) -> { z | E. x e. A z = ( f " x ) } ~< ( cf ` ( card ` T ) ) ) |
| 34 |
33
|
adantr |
|- ( ( ( T e. Tarski /\ Tr T /\ A e. T ) /\ f : U. A -1-1-onto-> ( card ` T ) ) -> { z | E. x e. A z = ( f " x ) } ~< ( cf ` ( card ` T ) ) ) |
| 35 |
28
|
3adant2 |
|- ( ( T e. Tarski /\ Tr T /\ A e. T ) -> ( card ` T ) e. Inacc ) |
| 36 |
35
|
adantr |
|- ( ( ( T e. Tarski /\ Tr T /\ A e. T ) /\ f : U. A -1-1-onto-> ( card ` T ) ) -> ( card ` T ) e. Inacc ) |
| 37 |
|
inawina |
|- ( ( card ` T ) e. Inacc -> ( card ` T ) e. InaccW ) |
| 38 |
|
winalim |
|- ( ( card ` T ) e. InaccW -> Lim ( card ` T ) ) |
| 39 |
36 37 38
|
3syl |
|- ( ( ( T e. Tarski /\ Tr T /\ A e. T ) /\ f : U. A -1-1-onto-> ( card ` T ) ) -> Lim ( card ` T ) ) |
| 40 |
|
vex |
|- y e. _V |
| 41 |
|
eqeq1 |
|- ( z = y -> ( z = ( f " x ) <-> y = ( f " x ) ) ) |
| 42 |
41
|
rexbidv |
|- ( z = y -> ( E. x e. A z = ( f " x ) <-> E. x e. A y = ( f " x ) ) ) |
| 43 |
40 42
|
elab |
|- ( y e. { z | E. x e. A z = ( f " x ) } <-> E. x e. A y = ( f " x ) ) |
| 44 |
|
imassrn |
|- ( f " x ) C_ ran f |
| 45 |
|
f1ofo |
|- ( f : U. A -1-1-onto-> ( card ` T ) -> f : U. A -onto-> ( card ` T ) ) |
| 46 |
|
forn |
|- ( f : U. A -onto-> ( card ` T ) -> ran f = ( card ` T ) ) |
| 47 |
45 46
|
syl |
|- ( f : U. A -1-1-onto-> ( card ` T ) -> ran f = ( card ` T ) ) |
| 48 |
44 47
|
sseqtrid |
|- ( f : U. A -1-1-onto-> ( card ` T ) -> ( f " x ) C_ ( card ` T ) ) |
| 49 |
48
|
ad2antlr |
|- ( ( ( ( T e. Tarski /\ Tr T /\ A e. T ) /\ f : U. A -1-1-onto-> ( card ` T ) ) /\ x e. A ) -> ( f " x ) C_ ( card ` T ) ) |
| 50 |
|
f1of1 |
|- ( f : U. A -1-1-onto-> ( card ` T ) -> f : U. A -1-1-> ( card ` T ) ) |
| 51 |
|
elssuni |
|- ( x e. A -> x C_ U. A ) |
| 52 |
|
vex |
|- x e. _V |
| 53 |
52
|
f1imaen |
|- ( ( f : U. A -1-1-> ( card ` T ) /\ x C_ U. A ) -> ( f " x ) ~~ x ) |
| 54 |
50 51 53
|
syl2an |
|- ( ( f : U. A -1-1-onto-> ( card ` T ) /\ x e. A ) -> ( f " x ) ~~ x ) |
| 55 |
54
|
adantll |
|- ( ( ( ( T e. Tarski /\ Tr T /\ A e. T ) /\ f : U. A -1-1-onto-> ( card ` T ) ) /\ x e. A ) -> ( f " x ) ~~ x ) |
| 56 |
|
simpl1 |
|- ( ( ( T e. Tarski /\ Tr T /\ A e. T ) /\ x e. A ) -> T e. Tarski ) |
| 57 |
|
trss |
|- ( Tr T -> ( A e. T -> A C_ T ) ) |
| 58 |
57
|
imp |
|- ( ( Tr T /\ A e. T ) -> A C_ T ) |
| 59 |
58
|
3adant1 |
|- ( ( T e. Tarski /\ Tr T /\ A e. T ) -> A C_ T ) |
| 60 |
59
|
sselda |
|- ( ( ( T e. Tarski /\ Tr T /\ A e. T ) /\ x e. A ) -> x e. T ) |
| 61 |
|
tsksdom |
|- ( ( T e. Tarski /\ x e. T ) -> x ~< T ) |
| 62 |
56 60 61
|
syl2anc |
|- ( ( ( T e. Tarski /\ Tr T /\ A e. T ) /\ x e. A ) -> x ~< T ) |
| 63 |
56 3
|
syl |
|- ( ( ( T e. Tarski /\ Tr T /\ A e. T ) /\ x e. A ) -> T ~~ ( card ` T ) ) |
| 64 |
|
sdomentr |
|- ( ( x ~< T /\ T ~~ ( card ` T ) ) -> x ~< ( card ` T ) ) |
| 65 |
62 63 64
|
syl2anc |
|- ( ( ( T e. Tarski /\ Tr T /\ A e. T ) /\ x e. A ) -> x ~< ( card ` T ) ) |
| 66 |
65
|
adantlr |
|- ( ( ( ( T e. Tarski /\ Tr T /\ A e. T ) /\ f : U. A -1-1-onto-> ( card ` T ) ) /\ x e. A ) -> x ~< ( card ` T ) ) |
| 67 |
|
ensdomtr |
|- ( ( ( f " x ) ~~ x /\ x ~< ( card ` T ) ) -> ( f " x ) ~< ( card ` T ) ) |
| 68 |
55 66 67
|
syl2anc |
|- ( ( ( ( T e. Tarski /\ Tr T /\ A e. T ) /\ f : U. A -1-1-onto-> ( card ` T ) ) /\ x e. A ) -> ( f " x ) ~< ( card ` T ) ) |
| 69 |
36 30
|
syl |
|- ( ( ( T e. Tarski /\ Tr T /\ A e. T ) /\ f : U. A -1-1-onto-> ( card ` T ) ) -> ( cf ` ( card ` T ) ) = ( card ` T ) ) |
| 70 |
69
|
adantr |
|- ( ( ( ( T e. Tarski /\ Tr T /\ A e. T ) /\ f : U. A -1-1-onto-> ( card ` T ) ) /\ x e. A ) -> ( cf ` ( card ` T ) ) = ( card ` T ) ) |
| 71 |
68 70
|
breqtrrd |
|- ( ( ( ( T e. Tarski /\ Tr T /\ A e. T ) /\ f : U. A -1-1-onto-> ( card ` T ) ) /\ x e. A ) -> ( f " x ) ~< ( cf ` ( card ` T ) ) ) |
| 72 |
|
sseq1 |
|- ( y = ( f " x ) -> ( y C_ ( card ` T ) <-> ( f " x ) C_ ( card ` T ) ) ) |
| 73 |
|
breq1 |
|- ( y = ( f " x ) -> ( y ~< ( cf ` ( card ` T ) ) <-> ( f " x ) ~< ( cf ` ( card ` T ) ) ) ) |
| 74 |
72 73
|
anbi12d |
|- ( y = ( f " x ) -> ( ( y C_ ( card ` T ) /\ y ~< ( cf ` ( card ` T ) ) ) <-> ( ( f " x ) C_ ( card ` T ) /\ ( f " x ) ~< ( cf ` ( card ` T ) ) ) ) ) |
| 75 |
74
|
biimprcd |
|- ( ( ( f " x ) C_ ( card ` T ) /\ ( f " x ) ~< ( cf ` ( card ` T ) ) ) -> ( y = ( f " x ) -> ( y C_ ( card ` T ) /\ y ~< ( cf ` ( card ` T ) ) ) ) ) |
| 76 |
49 71 75
|
syl2anc |
|- ( ( ( ( T e. Tarski /\ Tr T /\ A e. T ) /\ f : U. A -1-1-onto-> ( card ` T ) ) /\ x e. A ) -> ( y = ( f " x ) -> ( y C_ ( card ` T ) /\ y ~< ( cf ` ( card ` T ) ) ) ) ) |
| 77 |
76
|
rexlimdva |
|- ( ( ( T e. Tarski /\ Tr T /\ A e. T ) /\ f : U. A -1-1-onto-> ( card ` T ) ) -> ( E. x e. A y = ( f " x ) -> ( y C_ ( card ` T ) /\ y ~< ( cf ` ( card ` T ) ) ) ) ) |
| 78 |
43 77
|
biimtrid |
|- ( ( ( T e. Tarski /\ Tr T /\ A e. T ) /\ f : U. A -1-1-onto-> ( card ` T ) ) -> ( y e. { z | E. x e. A z = ( f " x ) } -> ( y C_ ( card ` T ) /\ y ~< ( cf ` ( card ` T ) ) ) ) ) |
| 79 |
78
|
ralrimiv |
|- ( ( ( T e. Tarski /\ Tr T /\ A e. T ) /\ f : U. A -1-1-onto-> ( card ` T ) ) -> A. y e. { z | E. x e. A z = ( f " x ) } ( y C_ ( card ` T ) /\ y ~< ( cf ` ( card ` T ) ) ) ) |
| 80 |
|
fvex |
|- ( card ` T ) e. _V |
| 81 |
80
|
cfslb2n |
|- ( ( Lim ( card ` T ) /\ A. y e. { z | E. x e. A z = ( f " x ) } ( y C_ ( card ` T ) /\ y ~< ( cf ` ( card ` T ) ) ) ) -> ( { z | E. x e. A z = ( f " x ) } ~< ( cf ` ( card ` T ) ) -> U. { z | E. x e. A z = ( f " x ) } =/= ( card ` T ) ) ) |
| 82 |
39 79 81
|
syl2anc |
|- ( ( ( T e. Tarski /\ Tr T /\ A e. T ) /\ f : U. A -1-1-onto-> ( card ` T ) ) -> ( { z | E. x e. A z = ( f " x ) } ~< ( cf ` ( card ` T ) ) -> U. { z | E. x e. A z = ( f " x ) } =/= ( card ` T ) ) ) |
| 83 |
34 82
|
mpd |
|- ( ( ( T e. Tarski /\ Tr T /\ A e. T ) /\ f : U. A -1-1-onto-> ( card ` T ) ) -> U. { z | E. x e. A z = ( f " x ) } =/= ( card ` T ) ) |
| 84 |
15
|
dfiun2 |
|- U_ x e. A ( f " x ) = U. { z | E. x e. A z = ( f " x ) } |
| 85 |
48
|
ralrimivw |
|- ( f : U. A -1-1-onto-> ( card ` T ) -> A. x e. A ( f " x ) C_ ( card ` T ) ) |
| 86 |
|
iunss |
|- ( U_ x e. A ( f " x ) C_ ( card ` T ) <-> A. x e. A ( f " x ) C_ ( card ` T ) ) |
| 87 |
85 86
|
sylibr |
|- ( f : U. A -1-1-onto-> ( card ` T ) -> U_ x e. A ( f " x ) C_ ( card ` T ) ) |
| 88 |
|
fof |
|- ( f : U. A -onto-> ( card ` T ) -> f : U. A --> ( card ` T ) ) |
| 89 |
|
foelrn |
|- ( ( f : U. A -onto-> ( card ` T ) /\ y e. ( card ` T ) ) -> E. z e. U. A y = ( f ` z ) ) |
| 90 |
89
|
ex |
|- ( f : U. A -onto-> ( card ` T ) -> ( y e. ( card ` T ) -> E. z e. U. A y = ( f ` z ) ) ) |
| 91 |
|
eluni2 |
|- ( z e. U. A <-> E. x e. A z e. x ) |
| 92 |
|
nfv |
|- F/ x f : U. A --> ( card ` T ) |
| 93 |
|
nfiu1 |
|- F/_ x U_ x e. A ( f " x ) |
| 94 |
93
|
nfel2 |
|- F/ x ( f ` z ) e. U_ x e. A ( f " x ) |
| 95 |
|
ssiun2 |
|- ( x e. A -> ( f " x ) C_ U_ x e. A ( f " x ) ) |
| 96 |
95
|
3ad2ant2 |
|- ( ( f : U. A --> ( card ` T ) /\ x e. A /\ z e. x ) -> ( f " x ) C_ U_ x e. A ( f " x ) ) |
| 97 |
|
ffn |
|- ( f : U. A --> ( card ` T ) -> f Fn U. A ) |
| 98 |
97
|
3ad2ant1 |
|- ( ( f : U. A --> ( card ` T ) /\ x e. A /\ z e. x ) -> f Fn U. A ) |
| 99 |
51
|
3ad2ant2 |
|- ( ( f : U. A --> ( card ` T ) /\ x e. A /\ z e. x ) -> x C_ U. A ) |
| 100 |
|
simp3 |
|- ( ( f : U. A --> ( card ` T ) /\ x e. A /\ z e. x ) -> z e. x ) |
| 101 |
|
fnfvima |
|- ( ( f Fn U. A /\ x C_ U. A /\ z e. x ) -> ( f ` z ) e. ( f " x ) ) |
| 102 |
98 99 100 101
|
syl3anc |
|- ( ( f : U. A --> ( card ` T ) /\ x e. A /\ z e. x ) -> ( f ` z ) e. ( f " x ) ) |
| 103 |
96 102
|
sseldd |
|- ( ( f : U. A --> ( card ` T ) /\ x e. A /\ z e. x ) -> ( f ` z ) e. U_ x e. A ( f " x ) ) |
| 104 |
103
|
3exp |
|- ( f : U. A --> ( card ` T ) -> ( x e. A -> ( z e. x -> ( f ` z ) e. U_ x e. A ( f " x ) ) ) ) |
| 105 |
92 94 104
|
rexlimd |
|- ( f : U. A --> ( card ` T ) -> ( E. x e. A z e. x -> ( f ` z ) e. U_ x e. A ( f " x ) ) ) |
| 106 |
91 105
|
biimtrid |
|- ( f : U. A --> ( card ` T ) -> ( z e. U. A -> ( f ` z ) e. U_ x e. A ( f " x ) ) ) |
| 107 |
|
eleq1a |
|- ( ( f ` z ) e. U_ x e. A ( f " x ) -> ( y = ( f ` z ) -> y e. U_ x e. A ( f " x ) ) ) |
| 108 |
106 107
|
syl6 |
|- ( f : U. A --> ( card ` T ) -> ( z e. U. A -> ( y = ( f ` z ) -> y e. U_ x e. A ( f " x ) ) ) ) |
| 109 |
108
|
rexlimdv |
|- ( f : U. A --> ( card ` T ) -> ( E. z e. U. A y = ( f ` z ) -> y e. U_ x e. A ( f " x ) ) ) |
| 110 |
88 90 109
|
sylsyld |
|- ( f : U. A -onto-> ( card ` T ) -> ( y e. ( card ` T ) -> y e. U_ x e. A ( f " x ) ) ) |
| 111 |
45 110
|
syl |
|- ( f : U. A -1-1-onto-> ( card ` T ) -> ( y e. ( card ` T ) -> y e. U_ x e. A ( f " x ) ) ) |
| 112 |
111
|
ssrdv |
|- ( f : U. A -1-1-onto-> ( card ` T ) -> ( card ` T ) C_ U_ x e. A ( f " x ) ) |
| 113 |
87 112
|
eqssd |
|- ( f : U. A -1-1-onto-> ( card ` T ) -> U_ x e. A ( f " x ) = ( card ` T ) ) |
| 114 |
84 113
|
eqtr3id |
|- ( f : U. A -1-1-onto-> ( card ` T ) -> U. { z | E. x e. A z = ( f " x ) } = ( card ` T ) ) |
| 115 |
114
|
necon3ai |
|- ( U. { z | E. x e. A z = ( f " x ) } =/= ( card ` T ) -> -. f : U. A -1-1-onto-> ( card ` T ) ) |
| 116 |
83 115
|
syl |
|- ( ( ( T e. Tarski /\ Tr T /\ A e. T ) /\ f : U. A -1-1-onto-> ( card ` T ) ) -> -. f : U. A -1-1-onto-> ( card ` T ) ) |
| 117 |
116
|
pm2.01da |
|- ( ( T e. Tarski /\ Tr T /\ A e. T ) -> -. f : U. A -1-1-onto-> ( card ` T ) ) |
| 118 |
117
|
nexdv |
|- ( ( T e. Tarski /\ Tr T /\ A e. T ) -> -. E. f f : U. A -1-1-onto-> ( card ` T ) ) |
| 119 |
|
entr |
|- ( ( U. A ~~ T /\ T ~~ ( card ` T ) ) -> U. A ~~ ( card ` T ) ) |
| 120 |
3 119
|
sylan2 |
|- ( ( U. A ~~ T /\ T e. Tarski ) -> U. A ~~ ( card ` T ) ) |
| 121 |
|
bren |
|- ( U. A ~~ ( card ` T ) <-> E. f f : U. A -1-1-onto-> ( card ` T ) ) |
| 122 |
120 121
|
sylib |
|- ( ( U. A ~~ T /\ T e. Tarski ) -> E. f f : U. A -1-1-onto-> ( card ` T ) ) |
| 123 |
122
|
expcom |
|- ( T e. Tarski -> ( U. A ~~ T -> E. f f : U. A -1-1-onto-> ( card ` T ) ) ) |
| 124 |
123
|
3ad2ant1 |
|- ( ( T e. Tarski /\ Tr T /\ A e. T ) -> ( U. A ~~ T -> E. f f : U. A -1-1-onto-> ( card ` T ) ) ) |
| 125 |
118 124
|
mtod |
|- ( ( T e. Tarski /\ Tr T /\ A e. T ) -> -. U. A ~~ T ) |
| 126 |
|
uniss |
|- ( A C_ T -> U. A C_ U. T ) |
| 127 |
|
df-tr |
|- ( Tr T <-> U. T C_ T ) |
| 128 |
127
|
biimpi |
|- ( Tr T -> U. T C_ T ) |
| 129 |
126 128
|
sylan9ss |
|- ( ( A C_ T /\ Tr T ) -> U. A C_ T ) |
| 130 |
129
|
expcom |
|- ( Tr T -> ( A C_ T -> U. A C_ T ) ) |
| 131 |
57 130
|
syld |
|- ( Tr T -> ( A e. T -> U. A C_ T ) ) |
| 132 |
131
|
imp |
|- ( ( Tr T /\ A e. T ) -> U. A C_ T ) |
| 133 |
|
tsken |
|- ( ( T e. Tarski /\ U. A C_ T ) -> ( U. A ~~ T \/ U. A e. T ) ) |
| 134 |
132 133
|
sylan2 |
|- ( ( T e. Tarski /\ ( Tr T /\ A e. T ) ) -> ( U. A ~~ T \/ U. A e. T ) ) |
| 135 |
134
|
3impb |
|- ( ( T e. Tarski /\ Tr T /\ A e. T ) -> ( U. A ~~ T \/ U. A e. T ) ) |
| 136 |
135
|
ord |
|- ( ( T e. Tarski /\ Tr T /\ A e. T ) -> ( -. U. A ~~ T -> U. A e. T ) ) |
| 137 |
125 136
|
mpd |
|- ( ( T e. Tarski /\ Tr T /\ A e. T ) -> U. A e. T ) |