Metamath Proof Explorer


Theorem tskcard

Description: An even more direct relationship than r1tskina to get an inaccessible cardinal out of a Tarski class: the size of any nonempty Tarski class is an inaccessible cardinal. (Contributed by Mario Carneiro, 9-Jun-2013)

Ref Expression
Assertion tskcard T Tarski T card T Inacc

Proof

Step Hyp Ref Expression
1 cardeq0 T Tarski card T = T =
2 1 necon3bid T Tarski card T T
3 2 biimpar T Tarski T card T
4 eqid z cf x On | card T x har w z = z cf x On | card T x har w z
5 4 pwcfsdom x On | card T x x On | card T x cf x On | card T x
6 vpwex 𝒫 x V
7 6 canth2 𝒫 x 𝒫 𝒫 x
8 simpl T Tarski x card T T Tarski
9 cardon card T On
10 9 oneli x card T x On
11 10 adantl T Tarski x card T x On
12 cardsdomelir x card T x T
13 12 adantl T Tarski x card T x T
14 tskord T Tarski x On x T x T
15 8 11 13 14 syl3anc T Tarski x card T x T
16 tskpw T Tarski x T 𝒫 x T
17 tskpwss T Tarski 𝒫 x T 𝒫 𝒫 x T
18 16 17 syldan T Tarski x T 𝒫 𝒫 x T
19 15 18 syldan T Tarski x card T 𝒫 𝒫 x T
20 ssdomg T Tarski 𝒫 𝒫 x T 𝒫 𝒫 x T
21 8 19 20 sylc T Tarski x card T 𝒫 𝒫 x T
22 cardidg T Tarski card T T
23 22 ensymd T Tarski T card T
24 23 adantr T Tarski x card T T card T
25 domentr 𝒫 𝒫 x T T card T 𝒫 𝒫 x card T
26 21 24 25 syl2anc T Tarski x card T 𝒫 𝒫 x card T
27 sdomdomtr 𝒫 x 𝒫 𝒫 x 𝒫 𝒫 x card T 𝒫 x card T
28 7 26 27 sylancr T Tarski x card T 𝒫 x card T
29 28 ralrimiva T Tarski x card T 𝒫 x card T
30 29 adantr T Tarski T x card T 𝒫 x card T
31 inawinalem card T On x card T 𝒫 x card T x card T y card T x y
32 9 31 ax-mp x card T 𝒫 x card T x card T y card T x y
33 winainflem card T card T On x card T y card T x y ω card T
34 9 33 mp3an2 card T x card T y card T x y ω card T
35 32 34 sylan2 card T x card T 𝒫 x card T ω card T
36 3 30 35 syl2anc T Tarski T ω card T
37 cardidm card card T = card T
38 cardaleph ω card T card card T = card T card T = x On | card T x
39 36 37 38 sylancl T Tarski T card T = x On | card T x
40 39 fveq2d T Tarski T cf card T = cf x On | card T x
41 39 40 oveq12d T Tarski T card T cf card T = x On | card T x cf x On | card T x
42 39 41 breq12d T Tarski T card T card T cf card T x On | card T x x On | card T x cf x On | card T x
43 5 42 mpbiri T Tarski T card T card T cf card T
44 simp1 T Tarski cf card T card T x card T cf card T T Tarski
45 simp3 T Tarski cf card T card T x card T cf card T x card T cf card T
46 fvex card T V
47 fvex cf card T V
48 46 47 elmap x card T cf card T x : cf card T card T
49 fssxp x : cf card T card T x cf card T × card T
50 48 49 sylbi x card T cf card T x cf card T × card T
51 15 ex T Tarski x card T x T
52 51 ssrdv T Tarski card T T
53 cfle cf card T card T
54 sstr cf card T card T card T T cf card T T
55 53 54 mpan card T T cf card T T
56 tskxpss T Tarski cf card T T card T T cf card T × card T T
57 56 3exp T Tarski cf card T T card T T cf card T × card T T
58 57 com23 T Tarski card T T cf card T T cf card T × card T T
59 55 58 mpdi T Tarski card T T cf card T × card T T
60 52 59 mpd T Tarski cf card T × card T T
61 sstr2 x cf card T × card T cf card T × card T T x T
62 50 60 61 syl2im x card T cf card T T Tarski x T
63 45 44 62 sylc T Tarski cf card T card T x card T cf card T x T
64 simp2 T Tarski cf card T card T x card T cf card T cf card T card T
65 ffn x : cf card T card T x Fn cf card T
66 fndmeng x Fn cf card T cf card T V cf card T x
67 65 47 66 sylancl x : cf card T card T cf card T x
68 48 67 sylbi x card T cf card T cf card T x
69 68 ensymd x card T cf card T x cf card T
70 cardsdomelir cf card T card T cf card T T
71 ensdomtr x cf card T cf card T T x T
72 69 70 71 syl2an x card T cf card T cf card T card T x T
73 45 64 72 syl2anc T Tarski cf card T card T x card T cf card T x T
74 tskssel T Tarski x T x T x T
75 44 63 73 74 syl3anc T Tarski cf card T card T x card T cf card T x T
76 75 3expia T Tarski cf card T card T x card T cf card T x T
77 76 ssrdv T Tarski cf card T card T card T cf card T T
78 ssdomg T Tarski card T cf card T T card T cf card T T
79 78 imp T Tarski card T cf card T T card T cf card T T
80 77 79 syldan T Tarski cf card T card T card T cf card T T
81 23 adantr T Tarski cf card T card T T card T
82 domentr card T cf card T T T card T card T cf card T card T
83 80 81 82 syl2anc T Tarski cf card T card T card T cf card T card T
84 domnsym card T cf card T card T ¬ card T card T cf card T
85 83 84 syl T Tarski cf card T card T ¬ card T card T cf card T
86 85 ex T Tarski cf card T card T ¬ card T card T cf card T
87 86 adantr T Tarski T cf card T card T ¬ card T card T cf card T
88 43 87 mt2d T Tarski T ¬ cf card T card T
89 cfon cf card T On
90 89 9 onsseli cf card T card T cf card T card T cf card T = card T
91 53 90 mpbi cf card T card T cf card T = card T
92 91 ori ¬ cf card T card T cf card T = card T
93 88 92 syl T Tarski T cf card T = card T
94 elina card T Inacc card T cf card T = card T x card T 𝒫 x card T
95 3 93 30 94 syl3anbrc T Tarski T card T Inacc