Metamath Proof Explorer


Theorem tskcard

Description: An even more direct relationship than r1tskina to get an inaccessible cardinal out of a Tarski class: the size of any nonempty Tarski class is an inaccessible cardinal. (Contributed by Mario Carneiro, 9-Jun-2013)

Ref Expression
Assertion tskcard TTarskiTcardTInacc

Proof

Step Hyp Ref Expression
1 cardeq0 TTarskicardT=T=
2 1 necon3bid TTarskicardTT
3 2 biimpar TTarskiTcardT
4 eqid zcfxOn|cardTxharwz=zcfxOn|cardTxharwz
5 4 pwcfsdom xOn|cardTxxOn|cardTxcfxOn|cardTx
6 vpwex 𝒫xV
7 6 canth2 𝒫x𝒫𝒫x
8 simpl TTarskixcardTTTarski
9 cardon cardTOn
10 9 oneli xcardTxOn
11 10 adantl TTarskixcardTxOn
12 cardsdomelir xcardTxT
13 12 adantl TTarskixcardTxT
14 tskord TTarskixOnxTxT
15 8 11 13 14 syl3anc TTarskixcardTxT
16 tskpw TTarskixT𝒫xT
17 tskpwss TTarski𝒫xT𝒫𝒫xT
18 16 17 syldan TTarskixT𝒫𝒫xT
19 15 18 syldan TTarskixcardT𝒫𝒫xT
20 ssdomg TTarski𝒫𝒫xT𝒫𝒫xT
21 8 19 20 sylc TTarskixcardT𝒫𝒫xT
22 cardidg TTarskicardTT
23 22 ensymd TTarskiTcardT
24 23 adantr TTarskixcardTTcardT
25 domentr 𝒫𝒫xTTcardT𝒫𝒫xcardT
26 21 24 25 syl2anc TTarskixcardT𝒫𝒫xcardT
27 sdomdomtr 𝒫x𝒫𝒫x𝒫𝒫xcardT𝒫xcardT
28 7 26 27 sylancr TTarskixcardT𝒫xcardT
29 28 ralrimiva TTarskixcardT𝒫xcardT
30 29 adantr TTarskiTxcardT𝒫xcardT
31 inawinalem cardTOnxcardT𝒫xcardTxcardTycardTxy
32 9 31 ax-mp xcardT𝒫xcardTxcardTycardTxy
33 winainflem cardTcardTOnxcardTycardTxyωcardT
34 9 33 mp3an2 cardTxcardTycardTxyωcardT
35 32 34 sylan2 cardTxcardT𝒫xcardTωcardT
36 3 30 35 syl2anc TTarskiTωcardT
37 cardidm cardcardT=cardT
38 cardaleph ωcardTcardcardT=cardTcardT=xOn|cardTx
39 36 37 38 sylancl TTarskiTcardT=xOn|cardTx
40 39 fveq2d TTarskiTcfcardT=cfxOn|cardTx
41 39 40 oveq12d TTarskiTcardTcfcardT=xOn|cardTxcfxOn|cardTx
42 39 41 breq12d TTarskiTcardTcardTcfcardTxOn|cardTxxOn|cardTxcfxOn|cardTx
43 5 42 mpbiri TTarskiTcardTcardTcfcardT
44 simp1 TTarskicfcardTcardTxcardTcfcardTTTarski
45 simp3 TTarskicfcardTcardTxcardTcfcardTxcardTcfcardT
46 fvex cardTV
47 fvex cfcardTV
48 46 47 elmap xcardTcfcardTx:cfcardTcardT
49 fssxp x:cfcardTcardTxcfcardT×cardT
50 48 49 sylbi xcardTcfcardTxcfcardT×cardT
51 15 ex TTarskixcardTxT
52 51 ssrdv TTarskicardTT
53 cfle cfcardTcardT
54 sstr cfcardTcardTcardTTcfcardTT
55 53 54 mpan cardTTcfcardTT
56 tskxpss TTarskicfcardTTcardTTcfcardT×cardTT
57 56 3exp TTarskicfcardTTcardTTcfcardT×cardTT
58 57 com23 TTarskicardTTcfcardTTcfcardT×cardTT
59 55 58 mpdi TTarskicardTTcfcardT×cardTT
60 52 59 mpd TTarskicfcardT×cardTT
61 sstr2 xcfcardT×cardTcfcardT×cardTTxT
62 50 60 61 syl2im xcardTcfcardTTTarskixT
63 45 44 62 sylc TTarskicfcardTcardTxcardTcfcardTxT
64 simp2 TTarskicfcardTcardTxcardTcfcardTcfcardTcardT
65 ffn x:cfcardTcardTxFncfcardT
66 fndmeng xFncfcardTcfcardTVcfcardTx
67 65 47 66 sylancl x:cfcardTcardTcfcardTx
68 48 67 sylbi xcardTcfcardTcfcardTx
69 68 ensymd xcardTcfcardTxcfcardT
70 cardsdomelir cfcardTcardTcfcardTT
71 ensdomtr xcfcardTcfcardTTxT
72 69 70 71 syl2an xcardTcfcardTcfcardTcardTxT
73 45 64 72 syl2anc TTarskicfcardTcardTxcardTcfcardTxT
74 tskssel TTarskixTxTxT
75 44 63 73 74 syl3anc TTarskicfcardTcardTxcardTcfcardTxT
76 75 3expia TTarskicfcardTcardTxcardTcfcardTxT
77 76 ssrdv TTarskicfcardTcardTcardTcfcardTT
78 ssdomg TTarskicardTcfcardTTcardTcfcardTT
79 78 imp TTarskicardTcfcardTTcardTcfcardTT
80 77 79 syldan TTarskicfcardTcardTcardTcfcardTT
81 23 adantr TTarskicfcardTcardTTcardT
82 domentr cardTcfcardTTTcardTcardTcfcardTcardT
83 80 81 82 syl2anc TTarskicfcardTcardTcardTcfcardTcardT
84 domnsym cardTcfcardTcardT¬cardTcardTcfcardT
85 83 84 syl TTarskicfcardTcardT¬cardTcardTcfcardT
86 85 ex TTarskicfcardTcardT¬cardTcardTcfcardT
87 86 adantr TTarskiTcfcardTcardT¬cardTcardTcfcardT
88 43 87 mt2d TTarskiT¬cfcardTcardT
89 cfon cfcardTOn
90 89 9 onsseli cfcardTcardTcfcardTcardTcfcardT=cardT
91 53 90 mpbi cfcardTcardTcfcardT=cardT
92 91 ori ¬cfcardTcardTcfcardT=cardT
93 88 92 syl TTarskiTcfcardT=cardT
94 elina cardTInacccardTcfcardT=cardTxcardT𝒫xcardT
95 3 93 30 94 syl3anbrc TTarskiTcardTInacc