Step |
Hyp |
Ref |
Expression |
1 |
|
cardeq0 |
|
2 |
1
|
necon3bid |
|
3 |
2
|
biimpar |
|
4 |
|
eqid |
|
5 |
4
|
pwcfsdom |
|
6 |
|
vpwex |
|
7 |
6
|
canth2 |
|
8 |
|
simpl |
|
9 |
|
cardon |
|
10 |
9
|
oneli |
|
11 |
10
|
adantl |
|
12 |
|
cardsdomelir |
|
13 |
12
|
adantl |
|
14 |
|
tskord |
|
15 |
8 11 13 14
|
syl3anc |
|
16 |
|
tskpw |
|
17 |
|
tskpwss |
|
18 |
16 17
|
syldan |
|
19 |
15 18
|
syldan |
|
20 |
|
ssdomg |
|
21 |
8 19 20
|
sylc |
|
22 |
|
cardidg |
|
23 |
22
|
ensymd |
|
24 |
23
|
adantr |
|
25 |
|
domentr |
|
26 |
21 24 25
|
syl2anc |
|
27 |
|
sdomdomtr |
|
28 |
7 26 27
|
sylancr |
|
29 |
28
|
ralrimiva |
|
30 |
29
|
adantr |
|
31 |
|
inawinalem |
|
32 |
9 31
|
ax-mp |
|
33 |
|
winainflem |
|
34 |
9 33
|
mp3an2 |
|
35 |
32 34
|
sylan2 |
|
36 |
3 30 35
|
syl2anc |
|
37 |
|
cardidm |
|
38 |
|
cardaleph |
|
39 |
36 37 38
|
sylancl |
|
40 |
39
|
fveq2d |
|
41 |
39 40
|
oveq12d |
|
42 |
39 41
|
breq12d |
|
43 |
5 42
|
mpbiri |
|
44 |
|
simp1 |
|
45 |
|
simp3 |
|
46 |
|
fvex |
|
47 |
|
fvex |
|
48 |
46 47
|
elmap |
|
49 |
|
fssxp |
|
50 |
48 49
|
sylbi |
|
51 |
15
|
ex |
|
52 |
51
|
ssrdv |
|
53 |
|
cfle |
|
54 |
|
sstr |
|
55 |
53 54
|
mpan |
|
56 |
|
tskxpss |
|
57 |
56
|
3exp |
|
58 |
57
|
com23 |
|
59 |
55 58
|
mpdi |
|
60 |
52 59
|
mpd |
|
61 |
|
sstr2 |
|
62 |
50 60 61
|
syl2im |
|
63 |
45 44 62
|
sylc |
|
64 |
|
simp2 |
|
65 |
|
ffn |
|
66 |
|
fndmeng |
|
67 |
65 47 66
|
sylancl |
|
68 |
48 67
|
sylbi |
|
69 |
68
|
ensymd |
|
70 |
|
cardsdomelir |
|
71 |
|
ensdomtr |
|
72 |
69 70 71
|
syl2an |
|
73 |
45 64 72
|
syl2anc |
|
74 |
|
tskssel |
|
75 |
44 63 73 74
|
syl3anc |
|
76 |
75
|
3expia |
|
77 |
76
|
ssrdv |
|
78 |
|
ssdomg |
|
79 |
78
|
imp |
|
80 |
77 79
|
syldan |
|
81 |
23
|
adantr |
|
82 |
|
domentr |
|
83 |
80 81 82
|
syl2anc |
|
84 |
|
domnsym |
|
85 |
83 84
|
syl |
|
86 |
85
|
ex |
|
87 |
86
|
adantr |
|
88 |
43 87
|
mt2d |
|
89 |
|
cfon |
|
90 |
89 9
|
onsseli |
|
91 |
53 90
|
mpbi |
|
92 |
91
|
ori |
|
93 |
88 92
|
syl |
|
94 |
|
elina |
|
95 |
3 93 30 94
|
syl3anbrc |
|