Metamath Proof Explorer


Theorem fndmeng

Description: A function is equinumerate to its domain. (Contributed by Paul Chapman, 22-Jun-2011)

Ref Expression
Assertion fndmeng FFnAACAF

Proof

Step Hyp Ref Expression
1 fnex FFnAACFV
2 fnfun FFnAFunF
3 2 adantr FFnAACFunF
4 fundmeng FVFunFdomFF
5 1 3 4 syl2anc FFnAACdomFF
6 fndm FFnAdomF=A
7 6 breq1d FFnAdomFFAF
8 7 adantr FFnAACdomFFAF
9 5 8 mpbid FFnAACAF