Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Equinumerosity
fndmeng
Next ⟩
mapsnend
Metamath Proof Explorer
Ascii
Unicode
Theorem
fndmeng
Description:
A function is equinumerate to its domain.
(Contributed by
Paul Chapman
, 22-Jun-2011)
Ref
Expression
Assertion
fndmeng
⊢
F
Fn
A
∧
A
∈
C
→
A
≈
F
Proof
Step
Hyp
Ref
Expression
1
fnex
⊢
F
Fn
A
∧
A
∈
C
→
F
∈
V
2
fnfun
⊢
F
Fn
A
→
Fun
⁡
F
3
2
adantr
⊢
F
Fn
A
∧
A
∈
C
→
Fun
⁡
F
4
fundmeng
⊢
F
∈
V
∧
Fun
⁡
F
→
dom
⁡
F
≈
F
5
1
3
4
syl2anc
⊢
F
Fn
A
∧
A
∈
C
→
dom
⁡
F
≈
F
6
fndm
⊢
F
Fn
A
→
dom
⁡
F
=
A
7
6
breq1d
⊢
F
Fn
A
→
dom
⁡
F
≈
F
↔
A
≈
F
8
7
adantr
⊢
F
Fn
A
∧
A
∈
C
→
dom
⁡
F
≈
F
↔
A
≈
F
9
5
8
mpbid
⊢
F
Fn
A
∧
A
∈
C
→
A
≈
F