Metamath Proof Explorer


Theorem r1tskina

Description: There is a direct relationship between transitive Tarski classes and inaccessible cardinals: the Tarski classes that occur in the cumulative hierarchy are exactly at the strongly inaccessible cardinals. (Contributed by Mario Carneiro, 8-Jun-2013)

Ref Expression
Assertion r1tskina A On R1 A Tarski A = A Inacc

Proof

Step Hyp Ref Expression
1 df-ne A ¬ A =
2 simplr A On R1 A Tarski A R1 A Tarski
3 simpll A On R1 A Tarski A A On
4 onwf On R1 On
5 4 sseli A On A R1 On
6 eqid rank A = rank A
7 rankr1c A R1 On rank A = rank A ¬ A R1 rank A A R1 suc rank A
8 6 7 mpbii A R1 On ¬ A R1 rank A A R1 suc rank A
9 5 8 syl A On ¬ A R1 rank A A R1 suc rank A
10 9 simpld A On ¬ A R1 rank A
11 r1fnon R1 Fn On
12 11 fndmi dom R1 = On
13 12 eleq2i A dom R1 A On
14 rankonid A dom R1 rank A = A
15 13 14 bitr3i A On rank A = A
16 fveq2 rank A = A R1 rank A = R1 A
17 15 16 sylbi A On R1 rank A = R1 A
18 10 17 neleqtrd A On ¬ A R1 A
19 18 adantl R1 A Tarski A On ¬ A R1 A
20 onssr1 A dom R1 A R1 A
21 13 20 sylbir A On A R1 A
22 tsken R1 A Tarski A R1 A A R1 A A R1 A
23 21 22 sylan2 R1 A Tarski A On A R1 A A R1 A
24 23 ord R1 A Tarski A On ¬ A R1 A A R1 A
25 19 24 mt3d R1 A Tarski A On A R1 A
26 2 3 25 syl2anc A On R1 A Tarski A A R1 A
27 carden2b A R1 A card A = card R1 A
28 26 27 syl A On R1 A Tarski A card A = card R1 A
29 simpl A On R1 A Tarski A On
30 simplr A On R1 A Tarski x A R1 A Tarski
31 21 adantr A On R1 A Tarski A R1 A
32 31 sselda A On R1 A Tarski x A x R1 A
33 tsksdom R1 A Tarski x R1 A x R1 A
34 30 32 33 syl2anc A On R1 A Tarski x A x R1 A
35 simpll A On R1 A Tarski x A A On
36 25 ensymd R1 A Tarski A On R1 A A
37 30 35 36 syl2anc A On R1 A Tarski x A R1 A A
38 sdomentr x R1 A R1 A A x A
39 34 37 38 syl2anc A On R1 A Tarski x A x A
40 39 ralrimiva A On R1 A Tarski x A x A
41 iscard card A = A A On x A x A
42 29 40 41 sylanbrc A On R1 A Tarski card A = A
43 42 adantr A On R1 A Tarski A card A = A
44 28 43 eqtr3d A On R1 A Tarski A card R1 A = A
45 r10 R1 =
46 on0eln0 A On A A
47 46 biimpar A On A A
48 r1sdom A On A R1 R1 A
49 47 48 syldan A On A R1 R1 A
50 45 49 eqbrtrrid A On A R1 A
51 fvex R1 A V
52 51 0sdom R1 A R1 A
53 50 52 sylib A On A R1 A
54 53 adantlr A On R1 A Tarski A R1 A
55 tskcard R1 A Tarski R1 A card R1 A Inacc
56 2 54 55 syl2anc A On R1 A Tarski A card R1 A Inacc
57 44 56 eqeltrrd A On R1 A Tarski A A Inacc
58 57 ex A On R1 A Tarski A A Inacc
59 1 58 syl5bir A On R1 A Tarski ¬ A = A Inacc
60 59 orrd A On R1 A Tarski A = A Inacc
61 60 ex A On R1 A Tarski A = A Inacc
62 fveq2 A = R1 A = R1
63 62 45 eqtrdi A = R1 A =
64 0tsk Tarski
65 63 64 eqeltrdi A = R1 A Tarski
66 inatsk A Inacc R1 A Tarski
67 65 66 jaoi A = A Inacc R1 A Tarski
68 61 67 impbid1 A On R1 A Tarski A = A Inacc