Metamath Proof Explorer


Theorem tskxpss

Description: A Cartesian product of two parts of a Tarski class is a part of the class. (Contributed by FL, 22-Feb-2011) (Proof shortened by Mario Carneiro, 20-Jun-2013)

Ref Expression
Assertion tskxpss TTarskiATBTA×BT

Proof

Step Hyp Ref Expression
1 elxp2 zT×TxTyTz=xy
2 tskop TTarskixTyTxyT
3 eleq1a xyTz=xyzT
4 2 3 syl TTarskixTyTz=xyzT
5 4 3expib TTarskixTyTz=xyzT
6 5 rexlimdvv TTarskixTyTz=xyzT
7 1 6 biimtrid TTarskizT×TzT
8 7 ssrdv TTarskiT×TT
9 xpss12 ATBTA×BT×T
10 sstr A×BT×TT×TTA×BT
11 10 expcom T×TTA×BT×TA×BT
12 8 9 11 syl2im TTarskiATBTA×BT
13 12 3impib TTarskiATBTA×BT