Metamath Proof Explorer


Theorem tskop

Description: If A and B are members of a Tarski class, their ordered pair is also an element of the class. JFM CLASSES2 th. 4. (Contributed by FL, 22-Feb-2011)

Ref Expression
Assertion tskop TTarskiATBTABT

Proof

Step Hyp Ref Expression
1 dfopg ATBTAB=AAB
2 1 3adant1 TTarskiATBTAB=AAB
3 simp1 TTarskiATBTTTarski
4 tsksn TTarskiATAT
5 4 3adant3 TTarskiATBTAT
6 tskpr TTarskiATBTABT
7 tskpr TTarskiATABTAABT
8 3 5 6 7 syl3anc TTarskiATBTAABT
9 2 8 eqeltrd TTarskiATBTABT