Metamath Proof Explorer


Theorem tskpr

Description: If A and B are members of a Tarski class, their unordered pair is also an element of the class. JFM CLASSES2 th. 3 (partly). (Contributed by FL, 22-Feb-2011) (Proof shortened by Mario Carneiro, 20-Jun-2013)

Ref Expression
Assertion tskpr TTarskiATBTABT

Proof

Step Hyp Ref Expression
1 simp1 TTarskiATBTTTarski
2 prssi ATBTABT
3 2 3adant1 TTarskiATBTABT
4 prfi ABFin
5 isfinite ABFinABω
6 4 5 mpbi ABω
7 ne0i ATT
8 tskinf TTarskiTωT
9 7 8 sylan2 TTarskiATωT
10 sdomdomtr ABωωTABT
11 6 9 10 sylancr TTarskiATABT
12 11 3adant3 TTarskiATBTABT
13 tskssel TTarskiABTABTABT
14 1 3 12 13 syl3anc TTarskiATBTABT