Description: If A and B are members of a Tarski class, their unordered pair is also an element of the class. JFM CLASSES2 th. 3 (partly). (Contributed by FL, 22-Feb-2011) (Proof shortened by Mario Carneiro, 20-Jun-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | tskpr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 | |
|
2 | prssi | |
|
3 | 2 | 3adant1 | |
4 | prfi | |
|
5 | isfinite | |
|
6 | 4 5 | mpbi | |
7 | ne0i | |
|
8 | tskinf | |
|
9 | 7 8 | sylan2 | |
10 | sdomdomtr | |
|
11 | 6 9 10 | sylancr | |
12 | 11 | 3adant3 | |
13 | tskssel | |
|
14 | 1 3 12 13 | syl3anc | |