Metamath Proof Explorer


Theorem tskpr

Description: If A and B are members of a Tarski class, their unordered pair is also an element of the class. JFM CLASSES2 th. 3 (partly). (Contributed by FL, 22-Feb-2011) (Proof shortened by Mario Carneiro, 20-Jun-2013)

Ref Expression
Assertion tskpr
|- ( ( T e. Tarski /\ A e. T /\ B e. T ) -> { A , B } e. T )

Proof

Step Hyp Ref Expression
1 simp1
 |-  ( ( T e. Tarski /\ A e. T /\ B e. T ) -> T e. Tarski )
2 prssi
 |-  ( ( A e. T /\ B e. T ) -> { A , B } C_ T )
3 2 3adant1
 |-  ( ( T e. Tarski /\ A e. T /\ B e. T ) -> { A , B } C_ T )
4 prfi
 |-  { A , B } e. Fin
5 isfinite
 |-  ( { A , B } e. Fin <-> { A , B } ~< _om )
6 4 5 mpbi
 |-  { A , B } ~< _om
7 ne0i
 |-  ( A e. T -> T =/= (/) )
8 tskinf
 |-  ( ( T e. Tarski /\ T =/= (/) ) -> _om ~<_ T )
9 7 8 sylan2
 |-  ( ( T e. Tarski /\ A e. T ) -> _om ~<_ T )
10 sdomdomtr
 |-  ( ( { A , B } ~< _om /\ _om ~<_ T ) -> { A , B } ~< T )
11 6 9 10 sylancr
 |-  ( ( T e. Tarski /\ A e. T ) -> { A , B } ~< T )
12 11 3adant3
 |-  ( ( T e. Tarski /\ A e. T /\ B e. T ) -> { A , B } ~< T )
13 tskssel
 |-  ( ( T e. Tarski /\ { A , B } C_ T /\ { A , B } ~< T ) -> { A , B } e. T )
14 1 3 12 13 syl3anc
 |-  ( ( T e. Tarski /\ A e. T /\ B e. T ) -> { A , B } e. T )