| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elxp2 |
⊢ ( 𝑧 ∈ ( 𝑇 × 𝑇 ) ↔ ∃ 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑇 𝑧 = 〈 𝑥 , 𝑦 〉 ) |
| 2 |
|
tskop |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ) → 〈 𝑥 , 𝑦 〉 ∈ 𝑇 ) |
| 3 |
|
eleq1a |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ 𝑇 → ( 𝑧 = 〈 𝑥 , 𝑦 〉 → 𝑧 ∈ 𝑇 ) ) |
| 4 |
2 3
|
syl |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ) → ( 𝑧 = 〈 𝑥 , 𝑦 〉 → 𝑧 ∈ 𝑇 ) ) |
| 5 |
4
|
3expib |
⊢ ( 𝑇 ∈ Tarski → ( ( 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ) → ( 𝑧 = 〈 𝑥 , 𝑦 〉 → 𝑧 ∈ 𝑇 ) ) ) |
| 6 |
5
|
rexlimdvv |
⊢ ( 𝑇 ∈ Tarski → ( ∃ 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑇 𝑧 = 〈 𝑥 , 𝑦 〉 → 𝑧 ∈ 𝑇 ) ) |
| 7 |
1 6
|
biimtrid |
⊢ ( 𝑇 ∈ Tarski → ( 𝑧 ∈ ( 𝑇 × 𝑇 ) → 𝑧 ∈ 𝑇 ) ) |
| 8 |
7
|
ssrdv |
⊢ ( 𝑇 ∈ Tarski → ( 𝑇 × 𝑇 ) ⊆ 𝑇 ) |
| 9 |
|
xpss12 |
⊢ ( ( 𝐴 ⊆ 𝑇 ∧ 𝐵 ⊆ 𝑇 ) → ( 𝐴 × 𝐵 ) ⊆ ( 𝑇 × 𝑇 ) ) |
| 10 |
|
sstr |
⊢ ( ( ( 𝐴 × 𝐵 ) ⊆ ( 𝑇 × 𝑇 ) ∧ ( 𝑇 × 𝑇 ) ⊆ 𝑇 ) → ( 𝐴 × 𝐵 ) ⊆ 𝑇 ) |
| 11 |
10
|
expcom |
⊢ ( ( 𝑇 × 𝑇 ) ⊆ 𝑇 → ( ( 𝐴 × 𝐵 ) ⊆ ( 𝑇 × 𝑇 ) → ( 𝐴 × 𝐵 ) ⊆ 𝑇 ) ) |
| 12 |
8 9 11
|
syl2im |
⊢ ( 𝑇 ∈ Tarski → ( ( 𝐴 ⊆ 𝑇 ∧ 𝐵 ⊆ 𝑇 ) → ( 𝐴 × 𝐵 ) ⊆ 𝑇 ) ) |
| 13 |
12
|
3impib |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ⊆ 𝑇 ∧ 𝐵 ⊆ 𝑇 ) → ( 𝐴 × 𝐵 ) ⊆ 𝑇 ) |