Metamath Proof Explorer


Theorem tskxpss

Description: A Cartesian product of two parts of a Tarski class is a part of the class. (Contributed by FL, 22-Feb-2011) (Proof shortened by Mario Carneiro, 20-Jun-2013)

Ref Expression
Assertion tskxpss ( ( 𝑇 ∈ Tarski ∧ 𝐴𝑇𝐵𝑇 ) → ( 𝐴 × 𝐵 ) ⊆ 𝑇 )

Proof

Step Hyp Ref Expression
1 elxp2 ( 𝑧 ∈ ( 𝑇 × 𝑇 ) ↔ ∃ 𝑥𝑇𝑦𝑇 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ )
2 tskop ( ( 𝑇 ∈ Tarski ∧ 𝑥𝑇𝑦𝑇 ) → ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑇 )
3 eleq1a ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑇 → ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ → 𝑧𝑇 ) )
4 2 3 syl ( ( 𝑇 ∈ Tarski ∧ 𝑥𝑇𝑦𝑇 ) → ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ → 𝑧𝑇 ) )
5 4 3expib ( 𝑇 ∈ Tarski → ( ( 𝑥𝑇𝑦𝑇 ) → ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ → 𝑧𝑇 ) ) )
6 5 rexlimdvv ( 𝑇 ∈ Tarski → ( ∃ 𝑥𝑇𝑦𝑇 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ → 𝑧𝑇 ) )
7 1 6 syl5bi ( 𝑇 ∈ Tarski → ( 𝑧 ∈ ( 𝑇 × 𝑇 ) → 𝑧𝑇 ) )
8 7 ssrdv ( 𝑇 ∈ Tarski → ( 𝑇 × 𝑇 ) ⊆ 𝑇 )
9 xpss12 ( ( 𝐴𝑇𝐵𝑇 ) → ( 𝐴 × 𝐵 ) ⊆ ( 𝑇 × 𝑇 ) )
10 sstr ( ( ( 𝐴 × 𝐵 ) ⊆ ( 𝑇 × 𝑇 ) ∧ ( 𝑇 × 𝑇 ) ⊆ 𝑇 ) → ( 𝐴 × 𝐵 ) ⊆ 𝑇 )
11 10 expcom ( ( 𝑇 × 𝑇 ) ⊆ 𝑇 → ( ( 𝐴 × 𝐵 ) ⊆ ( 𝑇 × 𝑇 ) → ( 𝐴 × 𝐵 ) ⊆ 𝑇 ) )
12 8 9 11 syl2im ( 𝑇 ∈ Tarski → ( ( 𝐴𝑇𝐵𝑇 ) → ( 𝐴 × 𝐵 ) ⊆ 𝑇 ) )
13 12 3impib ( ( 𝑇 ∈ Tarski ∧ 𝐴𝑇𝐵𝑇 ) → ( 𝐴 × 𝐵 ) ⊆ 𝑇 )