Metamath Proof Explorer


Theorem tskord

Description: A Tarski class contains all ordinals smaller than it. (Contributed by Mario Carneiro, 8-Jun-2013)

Ref Expression
Assertion tskord TTarskiAOnATAT

Proof

Step Hyp Ref Expression
1 breq1 x=yxTyT
2 1 anbi2d x=yTTarskixTTTarskiyT
3 eleq1 x=yxTyT
4 2 3 imbi12d x=yTTarskixTxTTTarskiyTyT
5 breq1 x=AxTAT
6 5 anbi2d x=ATTarskixTTTarskiAT
7 eleq1 x=AxTAT
8 6 7 imbi12d x=ATTarskixTxTTTarskiATAT
9 simplrl xOnTTarskixTyxTTarski
10 onelss xOnyxyx
11 ssdomg xOnyxyx
12 10 11 syld xOnyxyx
13 12 imp xOnyxyx
14 13 adantlr xOnTTarskixTyxyx
15 simplrr xOnTTarskixTyxxT
16 domsdomtr yxxTyT
17 14 15 16 syl2anc xOnTTarskixTyxyT
18 pm2.27 TTarskiyTTTarskiyTyTyT
19 9 17 18 syl2anc xOnTTarskixTyxTTarskiyTyTyT
20 19 ralimdva xOnTTarskixTyxTTarskiyTyTyxyT
21 dfss3 xTyxyT
22 tskssel TTarskixTxTxT
23 22 3exp TTarskixTxTxT
24 21 23 biimtrrid TTarskiyxyTxTxT
25 24 com23 TTarskixTyxyTxT
26 25 imp TTarskixTyxyTxT
27 26 adantl xOnTTarskixTyxyTxT
28 20 27 syld xOnTTarskixTyxTTarskiyTyTxT
29 28 ex xOnTTarskixTyxTTarskiyTyTxT
30 29 com23 xOnyxTTarskiyTyTTTarskixTxT
31 4 8 30 tfis3 AOnTTarskiATAT
32 31 3impib AOnTTarskiATAT
33 32 3com12 TTarskiAOnATAT