Metamath Proof Explorer


Theorem pwinfi

Description: The powerclass of an infinite set is an infinite set, and vice-versa. (Contributed by RP, 21-Mar-2020)

Ref Expression
Assertion pwinfi ( 𝐴 ∈ ( V ∖ Fin ) ↔ 𝒫 𝐴 ∈ ( V ∖ Fin ) )

Proof

Step Hyp Ref Expression
1 vuniex 𝑥 ∈ V
2 vpwex 𝒫 𝑥 ∈ V
3 1 2 pm3.2i ( 𝑥 ∈ V ∧ 𝒫 𝑥 ∈ V )
4 3 rgenw 𝑥 ∈ V ( 𝑥 ∈ V ∧ 𝒫 𝑥 ∈ V )
5 pwinfig ( ∀ 𝑥 ∈ V ( 𝑥 ∈ V ∧ 𝒫 𝑥 ∈ V ) → ( 𝐴 ∈ ( V ∖ Fin ) ↔ 𝒫 𝐴 ∈ ( V ∖ Fin ) ) )
6 4 5 ax-mp ( 𝐴 ∈ ( V ∖ Fin ) ↔ 𝒫 𝐴 ∈ ( V ∖ Fin ) )