Metamath Proof Explorer
Description: The powerclass of an infinite set is an infinite set, and vice-versa.
(Contributed by RP, 21-Mar-2020)
|
|
Ref |
Expression |
|
Assertion |
pwinfi |
⊢ ( 𝐴 ∈ ( V ∖ Fin ) ↔ 𝒫 𝐴 ∈ ( V ∖ Fin ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
vuniex |
⊢ ∪ 𝑥 ∈ V |
2 |
|
vpwex |
⊢ 𝒫 𝑥 ∈ V |
3 |
1 2
|
pm3.2i |
⊢ ( ∪ 𝑥 ∈ V ∧ 𝒫 𝑥 ∈ V ) |
4 |
3
|
rgenw |
⊢ ∀ 𝑥 ∈ V ( ∪ 𝑥 ∈ V ∧ 𝒫 𝑥 ∈ V ) |
5 |
|
pwinfig |
⊢ ( ∀ 𝑥 ∈ V ( ∪ 𝑥 ∈ V ∧ 𝒫 𝑥 ∈ V ) → ( 𝐴 ∈ ( V ∖ Fin ) ↔ 𝒫 𝐴 ∈ ( V ∖ Fin ) ) ) |
6 |
4 5
|
ax-mp |
⊢ ( 𝐴 ∈ ( V ∖ Fin ) ↔ 𝒫 𝐴 ∈ ( V ∖ Fin ) ) |