Description: The powerclass of an infinite set is an infinite set, and vice-versa. (Contributed by RP, 21-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pwinfi | |- ( A e. ( _V \ Fin ) <-> ~P A e. ( _V \ Fin ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vuniex | |- U. x e. _V |
|
| 2 | vpwex | |- ~P x e. _V |
|
| 3 | 1 2 | pm3.2i | |- ( U. x e. _V /\ ~P x e. _V ) |
| 4 | 3 | rgenw | |- A. x e. _V ( U. x e. _V /\ ~P x e. _V ) |
| 5 | pwinfig | |- ( A. x e. _V ( U. x e. _V /\ ~P x e. _V ) -> ( A e. ( _V \ Fin ) <-> ~P A e. ( _V \ Fin ) ) ) |
|
| 6 | 4 5 | ax-mp | |- ( A e. ( _V \ Fin ) <-> ~P A e. ( _V \ Fin ) ) |