Metamath Proof Explorer


Theorem pwinfi2

Description: The powerclass of an infinite set is an infinite set, and vice-versa. Here U is a weak universe. (Contributed by RP, 21-Mar-2020)

Ref Expression
Assertion pwinfi2 U WUni A U Fin 𝒫 A U Fin

Proof

Step Hyp Ref Expression
1 iswun U WUni U WUni Tr U U x U x U 𝒫 x U y U x y U
2 1 ibi U WUni Tr U U x U x U 𝒫 x U y U x y U
3 3simpa x U 𝒫 x U y U x y U x U 𝒫 x U
4 3 ralimi x U x U 𝒫 x U y U x y U x U x U 𝒫 x U
5 4 3ad2ant3 Tr U U x U x U 𝒫 x U y U x y U x U x U 𝒫 x U
6 pwinfig x U x U 𝒫 x U A U Fin 𝒫 A U Fin
7 2 5 6 3syl U WUni A U Fin 𝒫 A U Fin