Metamath Proof Explorer


Theorem pwinfi2

Description: The powerclass of an infinite set is an infinite set, and vice-versa. Here U is a weak universe. (Contributed by RP, 21-Mar-2020)

Ref Expression
Assertion pwinfi2 UWUniAUFin𝒫AUFin

Proof

Step Hyp Ref Expression
1 iswun UWUniUWUniTrUUxUxU𝒫xUyUxyU
2 1 ibi UWUniTrUUxUxU𝒫xUyUxyU
3 3simpa xU𝒫xUyUxyUxU𝒫xU
4 3 ralimi xUxU𝒫xUyUxyUxUxU𝒫xU
5 4 3ad2ant3 TrUUxUxU𝒫xUyUxyUxUxU𝒫xU
6 pwinfig xUxU𝒫xUAUFin𝒫AUFin
7 2 5 6 3syl UWUniAUFin𝒫AUFin