Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
⊢ ( ( ∪ 𝑥 ∈ 𝐵 ∧ 𝒫 𝑥 ∈ 𝐵 ) → 𝒫 𝑥 ∈ 𝐵 ) |
2 |
1
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐵 ( ∪ 𝑥 ∈ 𝐵 ∧ 𝒫 𝑥 ∈ 𝐵 ) → ∀ 𝑥 ∈ 𝐵 𝒫 𝑥 ∈ 𝐵 ) |
3 |
|
pweq |
⊢ ( 𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴 ) |
4 |
3
|
eleq1d |
⊢ ( 𝑥 = 𝐴 → ( 𝒫 𝑥 ∈ 𝐵 ↔ 𝒫 𝐴 ∈ 𝐵 ) ) |
5 |
4
|
rspccv |
⊢ ( ∀ 𝑥 ∈ 𝐵 𝒫 𝑥 ∈ 𝐵 → ( 𝐴 ∈ 𝐵 → 𝒫 𝐴 ∈ 𝐵 ) ) |
6 |
2 5
|
syl |
⊢ ( ∀ 𝑥 ∈ 𝐵 ( ∪ 𝑥 ∈ 𝐵 ∧ 𝒫 𝑥 ∈ 𝐵 ) → ( 𝐴 ∈ 𝐵 → 𝒫 𝐴 ∈ 𝐵 ) ) |
7 |
|
simpl |
⊢ ( ( ∪ 𝑥 ∈ 𝐵 ∧ 𝒫 𝑥 ∈ 𝐵 ) → ∪ 𝑥 ∈ 𝐵 ) |
8 |
7
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐵 ( ∪ 𝑥 ∈ 𝐵 ∧ 𝒫 𝑥 ∈ 𝐵 ) → ∀ 𝑥 ∈ 𝐵 ∪ 𝑥 ∈ 𝐵 ) |
9 |
|
unieq |
⊢ ( 𝑥 = 𝒫 𝐴 → ∪ 𝑥 = ∪ 𝒫 𝐴 ) |
10 |
|
unipw |
⊢ ∪ 𝒫 𝐴 = 𝐴 |
11 |
9 10
|
eqtrdi |
⊢ ( 𝑥 = 𝒫 𝐴 → ∪ 𝑥 = 𝐴 ) |
12 |
11
|
eleq1d |
⊢ ( 𝑥 = 𝒫 𝐴 → ( ∪ 𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵 ) ) |
13 |
12
|
rspccv |
⊢ ( ∀ 𝑥 ∈ 𝐵 ∪ 𝑥 ∈ 𝐵 → ( 𝒫 𝐴 ∈ 𝐵 → 𝐴 ∈ 𝐵 ) ) |
14 |
8 13
|
syl |
⊢ ( ∀ 𝑥 ∈ 𝐵 ( ∪ 𝑥 ∈ 𝐵 ∧ 𝒫 𝑥 ∈ 𝐵 ) → ( 𝒫 𝐴 ∈ 𝐵 → 𝐴 ∈ 𝐵 ) ) |
15 |
6 14
|
impbid |
⊢ ( ∀ 𝑥 ∈ 𝐵 ( ∪ 𝑥 ∈ 𝐵 ∧ 𝒫 𝑥 ∈ 𝐵 ) → ( 𝐴 ∈ 𝐵 ↔ 𝒫 𝐴 ∈ 𝐵 ) ) |