Metamath Proof Explorer


Theorem pwelg

Description: The powerclass is an element of a class closed under union and powerclass operations iff the element is a member of that class. (Contributed by RP, 21-Mar-2020)

Ref Expression
Assertion pwelg ( ∀ 𝑥𝐵 ( 𝑥𝐵 ∧ 𝒫 𝑥𝐵 ) → ( 𝐴𝐵 ↔ 𝒫 𝐴𝐵 ) )

Proof

Step Hyp Ref Expression
1 simpr ( ( 𝑥𝐵 ∧ 𝒫 𝑥𝐵 ) → 𝒫 𝑥𝐵 )
2 1 ralimi ( ∀ 𝑥𝐵 ( 𝑥𝐵 ∧ 𝒫 𝑥𝐵 ) → ∀ 𝑥𝐵 𝒫 𝑥𝐵 )
3 pweq ( 𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴 )
4 3 eleq1d ( 𝑥 = 𝐴 → ( 𝒫 𝑥𝐵 ↔ 𝒫 𝐴𝐵 ) )
5 4 rspccv ( ∀ 𝑥𝐵 𝒫 𝑥𝐵 → ( 𝐴𝐵 → 𝒫 𝐴𝐵 ) )
6 2 5 syl ( ∀ 𝑥𝐵 ( 𝑥𝐵 ∧ 𝒫 𝑥𝐵 ) → ( 𝐴𝐵 → 𝒫 𝐴𝐵 ) )
7 simpl ( ( 𝑥𝐵 ∧ 𝒫 𝑥𝐵 ) → 𝑥𝐵 )
8 7 ralimi ( ∀ 𝑥𝐵 ( 𝑥𝐵 ∧ 𝒫 𝑥𝐵 ) → ∀ 𝑥𝐵 𝑥𝐵 )
9 unieq ( 𝑥 = 𝒫 𝐴 𝑥 = 𝒫 𝐴 )
10 unipw 𝒫 𝐴 = 𝐴
11 9 10 eqtrdi ( 𝑥 = 𝒫 𝐴 𝑥 = 𝐴 )
12 11 eleq1d ( 𝑥 = 𝒫 𝐴 → ( 𝑥𝐵𝐴𝐵 ) )
13 12 rspccv ( ∀ 𝑥𝐵 𝑥𝐵 → ( 𝒫 𝐴𝐵𝐴𝐵 ) )
14 8 13 syl ( ∀ 𝑥𝐵 ( 𝑥𝐵 ∧ 𝒫 𝑥𝐵 ) → ( 𝒫 𝐴𝐵𝐴𝐵 ) )
15 6 14 impbid ( ∀ 𝑥𝐵 ( 𝑥𝐵 ∧ 𝒫 𝑥𝐵 ) → ( 𝐴𝐵 ↔ 𝒫 𝐴𝐵 ) )