Step |
Hyp |
Ref |
Expression |
1 |
|
ssun |
|- ( ( x C_ A \/ x C_ B ) -> x C_ ( A u. B ) ) |
2 |
|
elun |
|- ( x e. ( ~P A u. ~P B ) <-> ( x e. ~P A \/ x e. ~P B ) ) |
3 |
|
velpw |
|- ( x e. ~P A <-> x C_ A ) |
4 |
|
velpw |
|- ( x e. ~P B <-> x C_ B ) |
5 |
3 4
|
orbi12i |
|- ( ( x e. ~P A \/ x e. ~P B ) <-> ( x C_ A \/ x C_ B ) ) |
6 |
2 5
|
bitri |
|- ( x e. ( ~P A u. ~P B ) <-> ( x C_ A \/ x C_ B ) ) |
7 |
|
velpw |
|- ( x e. ~P ( A u. B ) <-> x C_ ( A u. B ) ) |
8 |
1 6 7
|
3imtr4i |
|- ( x e. ( ~P A u. ~P B ) -> x e. ~P ( A u. B ) ) |
9 |
8
|
ssriv |
|- ( ~P A u. ~P B ) C_ ~P ( A u. B ) |