| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pyth.1 |
|- X = ( BaseSet ` U ) |
| 2 |
|
pyth.2 |
|- G = ( +v ` U ) |
| 3 |
|
pyth.6 |
|- N = ( normCV ` U ) |
| 4 |
|
pyth.7 |
|- P = ( .iOLD ` U ) |
| 5 |
|
pythi.u |
|- U e. CPreHilOLD |
| 6 |
|
pythi.a |
|- A e. X |
| 7 |
|
pythi.b |
|- B e. X |
| 8 |
1 2 4 5 6 7 6 7
|
ip2dii |
|- ( ( A G B ) P ( A G B ) ) = ( ( ( A P A ) + ( B P B ) ) + ( ( A P B ) + ( B P A ) ) ) |
| 9 |
|
id |
|- ( ( A P B ) = 0 -> ( A P B ) = 0 ) |
| 10 |
5
|
phnvi |
|- U e. NrmCVec |
| 11 |
1 4
|
diporthcom |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( A P B ) = 0 <-> ( B P A ) = 0 ) ) |
| 12 |
10 6 7 11
|
mp3an |
|- ( ( A P B ) = 0 <-> ( B P A ) = 0 ) |
| 13 |
12
|
biimpi |
|- ( ( A P B ) = 0 -> ( B P A ) = 0 ) |
| 14 |
9 13
|
oveq12d |
|- ( ( A P B ) = 0 -> ( ( A P B ) + ( B P A ) ) = ( 0 + 0 ) ) |
| 15 |
|
00id |
|- ( 0 + 0 ) = 0 |
| 16 |
14 15
|
eqtrdi |
|- ( ( A P B ) = 0 -> ( ( A P B ) + ( B P A ) ) = 0 ) |
| 17 |
16
|
oveq2d |
|- ( ( A P B ) = 0 -> ( ( ( A P A ) + ( B P B ) ) + ( ( A P B ) + ( B P A ) ) ) = ( ( ( A P A ) + ( B P B ) ) + 0 ) ) |
| 18 |
1 4
|
dipcl |
|- ( ( U e. NrmCVec /\ A e. X /\ A e. X ) -> ( A P A ) e. CC ) |
| 19 |
10 6 6 18
|
mp3an |
|- ( A P A ) e. CC |
| 20 |
1 4
|
dipcl |
|- ( ( U e. NrmCVec /\ B e. X /\ B e. X ) -> ( B P B ) e. CC ) |
| 21 |
10 7 7 20
|
mp3an |
|- ( B P B ) e. CC |
| 22 |
19 21
|
addcli |
|- ( ( A P A ) + ( B P B ) ) e. CC |
| 23 |
22
|
addridi |
|- ( ( ( A P A ) + ( B P B ) ) + 0 ) = ( ( A P A ) + ( B P B ) ) |
| 24 |
17 23
|
eqtrdi |
|- ( ( A P B ) = 0 -> ( ( ( A P A ) + ( B P B ) ) + ( ( A P B ) + ( B P A ) ) ) = ( ( A P A ) + ( B P B ) ) ) |
| 25 |
8 24
|
eqtrid |
|- ( ( A P B ) = 0 -> ( ( A G B ) P ( A G B ) ) = ( ( A P A ) + ( B P B ) ) ) |
| 26 |
1 2
|
nvgcl |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A G B ) e. X ) |
| 27 |
10 6 7 26
|
mp3an |
|- ( A G B ) e. X |
| 28 |
1 3 4
|
ipidsq |
|- ( ( U e. NrmCVec /\ ( A G B ) e. X ) -> ( ( A G B ) P ( A G B ) ) = ( ( N ` ( A G B ) ) ^ 2 ) ) |
| 29 |
10 27 28
|
mp2an |
|- ( ( A G B ) P ( A G B ) ) = ( ( N ` ( A G B ) ) ^ 2 ) |
| 30 |
1 3 4
|
ipidsq |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( A P A ) = ( ( N ` A ) ^ 2 ) ) |
| 31 |
10 6 30
|
mp2an |
|- ( A P A ) = ( ( N ` A ) ^ 2 ) |
| 32 |
1 3 4
|
ipidsq |
|- ( ( U e. NrmCVec /\ B e. X ) -> ( B P B ) = ( ( N ` B ) ^ 2 ) ) |
| 33 |
10 7 32
|
mp2an |
|- ( B P B ) = ( ( N ` B ) ^ 2 ) |
| 34 |
31 33
|
oveq12i |
|- ( ( A P A ) + ( B P B ) ) = ( ( ( N ` A ) ^ 2 ) + ( ( N ` B ) ^ 2 ) ) |
| 35 |
25 29 34
|
3eqtr3g |
|- ( ( A P B ) = 0 -> ( ( N ` ( A G B ) ) ^ 2 ) = ( ( ( N ` A ) ^ 2 ) + ( ( N ` B ) ^ 2 ) ) ) |