Description: A quotient of a path-connected space is path-connected. (Contributed by Mario Carneiro, 24-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | pconnpi1.x | |- X = U. J |
|
Assertion | qtoppconn | |- ( ( J e. PConn /\ F Fn X ) -> ( J qTop F ) e. PConn ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pconnpi1.x | |- X = U. J |
|
2 | pconntop | |- ( J e. PConn -> J e. Top ) |
|
3 | eqid | |- U. ( J qTop F ) = U. ( J qTop F ) |
|
4 | 3 | cnpconn | |- ( ( J e. PConn /\ F : X -onto-> U. ( J qTop F ) /\ F e. ( J Cn ( J qTop F ) ) ) -> ( J qTop F ) e. PConn ) |
5 | 1 2 4 | qtopcmplem | |- ( ( J e. PConn /\ F Fn X ) -> ( J qTop F ) e. PConn ) |