Description: A quotient of a path-connected space is path-connected. (Contributed by Mario Carneiro, 24-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pconnpi1.x | |- X = U. J | |
| Assertion | qtoppconn | |- ( ( J e. PConn /\ F Fn X ) -> ( J qTop F ) e. PConn ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pconnpi1.x | |- X = U. J | |
| 2 | pconntop | |- ( J e. PConn -> J e. Top ) | |
| 3 | eqid | |- U. ( J qTop F ) = U. ( J qTop F ) | |
| 4 | 3 | cnpconn | |- ( ( J e. PConn /\ F : X -onto-> U. ( J qTop F ) /\ F e. ( J Cn ( J qTop F ) ) ) -> ( J qTop F ) e. PConn ) | 
| 5 | 1 2 4 | qtopcmplem | |- ( ( J e. PConn /\ F Fn X ) -> ( J qTop F ) e. PConn ) |