Metamath Proof Explorer


Theorem qtoppconn

Description: A quotient of a path-connected space is path-connected. (Contributed by Mario Carneiro, 24-Mar-2015)

Ref Expression
Hypothesis pconnpi1.x
|- X = U. J
Assertion qtoppconn
|- ( ( J e. PConn /\ F Fn X ) -> ( J qTop F ) e. PConn )

Proof

Step Hyp Ref Expression
1 pconnpi1.x
 |-  X = U. J
2 pconntop
 |-  ( J e. PConn -> J e. Top )
3 eqid
 |-  U. ( J qTop F ) = U. ( J qTop F )
4 3 cnpconn
 |-  ( ( J e. PConn /\ F : X -onto-> U. ( J qTop F ) /\ F e. ( J Cn ( J qTop F ) ) ) -> ( J qTop F ) e. PConn )
5 1 2 4 qtopcmplem
 |-  ( ( J e. PConn /\ F Fn X ) -> ( J qTop F ) e. PConn )