| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pconnpi1.x |
|- X = U. J |
| 2 |
|
pconnpi1.p |
|- P = ( J pi1 A ) |
| 3 |
|
pconnpi1.q |
|- Q = ( J pi1 B ) |
| 4 |
|
pconnpi1.s |
|- S = ( Base ` P ) |
| 5 |
|
pconnpi1.t |
|- T = ( Base ` Q ) |
| 6 |
1
|
pconncn |
|- ( ( J e. PConn /\ A e. X /\ B e. X ) -> E. f e. ( II Cn J ) ( ( f ` 0 ) = A /\ ( f ` 1 ) = B ) ) |
| 7 |
|
eqid |
|- ( J pi1 ( f ` 0 ) ) = ( J pi1 ( f ` 0 ) ) |
| 8 |
|
eqid |
|- ( J pi1 ( f ` 1 ) ) = ( J pi1 ( f ` 1 ) ) |
| 9 |
|
eqid |
|- ( Base ` ( J pi1 ( f ` 0 ) ) ) = ( Base ` ( J pi1 ( f ` 0 ) ) ) |
| 10 |
|
eqid |
|- ran ( h e. U. ( Base ` ( J pi1 ( f ` 0 ) ) ) |-> <. [ h ] ( ~=ph ` J ) , [ ( ( x e. ( 0 [,] 1 ) |-> ( f ` ( 1 - x ) ) ) ( *p ` J ) ( h ( *p ` J ) f ) ) ] ( ~=ph ` J ) >. ) = ran ( h e. U. ( Base ` ( J pi1 ( f ` 0 ) ) ) |-> <. [ h ] ( ~=ph ` J ) , [ ( ( x e. ( 0 [,] 1 ) |-> ( f ` ( 1 - x ) ) ) ( *p ` J ) ( h ( *p ` J ) f ) ) ] ( ~=ph ` J ) >. ) |
| 11 |
|
simpl1 |
|- ( ( ( J e. PConn /\ A e. X /\ B e. X ) /\ ( f e. ( II Cn J ) /\ ( ( f ` 0 ) = A /\ ( f ` 1 ) = B ) ) ) -> J e. PConn ) |
| 12 |
|
pconntop |
|- ( J e. PConn -> J e. Top ) |
| 13 |
11 12
|
syl |
|- ( ( ( J e. PConn /\ A e. X /\ B e. X ) /\ ( f e. ( II Cn J ) /\ ( ( f ` 0 ) = A /\ ( f ` 1 ) = B ) ) ) -> J e. Top ) |
| 14 |
1
|
toptopon |
|- ( J e. Top <-> J e. ( TopOn ` X ) ) |
| 15 |
13 14
|
sylib |
|- ( ( ( J e. PConn /\ A e. X /\ B e. X ) /\ ( f e. ( II Cn J ) /\ ( ( f ` 0 ) = A /\ ( f ` 1 ) = B ) ) ) -> J e. ( TopOn ` X ) ) |
| 16 |
|
simprl |
|- ( ( ( J e. PConn /\ A e. X /\ B e. X ) /\ ( f e. ( II Cn J ) /\ ( ( f ` 0 ) = A /\ ( f ` 1 ) = B ) ) ) -> f e. ( II Cn J ) ) |
| 17 |
|
oveq2 |
|- ( x = y -> ( 1 - x ) = ( 1 - y ) ) |
| 18 |
17
|
fveq2d |
|- ( x = y -> ( f ` ( 1 - x ) ) = ( f ` ( 1 - y ) ) ) |
| 19 |
18
|
cbvmptv |
|- ( x e. ( 0 [,] 1 ) |-> ( f ` ( 1 - x ) ) ) = ( y e. ( 0 [,] 1 ) |-> ( f ` ( 1 - y ) ) ) |
| 20 |
7 8 9 10 15 16 19
|
pi1xfrgim |
|- ( ( ( J e. PConn /\ A e. X /\ B e. X ) /\ ( f e. ( II Cn J ) /\ ( ( f ` 0 ) = A /\ ( f ` 1 ) = B ) ) ) -> ran ( h e. U. ( Base ` ( J pi1 ( f ` 0 ) ) ) |-> <. [ h ] ( ~=ph ` J ) , [ ( ( x e. ( 0 [,] 1 ) |-> ( f ` ( 1 - x ) ) ) ( *p ` J ) ( h ( *p ` J ) f ) ) ] ( ~=ph ` J ) >. ) e. ( ( J pi1 ( f ` 0 ) ) GrpIso ( J pi1 ( f ` 1 ) ) ) ) |
| 21 |
|
simprrl |
|- ( ( ( J e. PConn /\ A e. X /\ B e. X ) /\ ( f e. ( II Cn J ) /\ ( ( f ` 0 ) = A /\ ( f ` 1 ) = B ) ) ) -> ( f ` 0 ) = A ) |
| 22 |
21
|
oveq2d |
|- ( ( ( J e. PConn /\ A e. X /\ B e. X ) /\ ( f e. ( II Cn J ) /\ ( ( f ` 0 ) = A /\ ( f ` 1 ) = B ) ) ) -> ( J pi1 ( f ` 0 ) ) = ( J pi1 A ) ) |
| 23 |
22 2
|
eqtr4di |
|- ( ( ( J e. PConn /\ A e. X /\ B e. X ) /\ ( f e. ( II Cn J ) /\ ( ( f ` 0 ) = A /\ ( f ` 1 ) = B ) ) ) -> ( J pi1 ( f ` 0 ) ) = P ) |
| 24 |
|
simprrr |
|- ( ( ( J e. PConn /\ A e. X /\ B e. X ) /\ ( f e. ( II Cn J ) /\ ( ( f ` 0 ) = A /\ ( f ` 1 ) = B ) ) ) -> ( f ` 1 ) = B ) |
| 25 |
24
|
oveq2d |
|- ( ( ( J e. PConn /\ A e. X /\ B e. X ) /\ ( f e. ( II Cn J ) /\ ( ( f ` 0 ) = A /\ ( f ` 1 ) = B ) ) ) -> ( J pi1 ( f ` 1 ) ) = ( J pi1 B ) ) |
| 26 |
25 3
|
eqtr4di |
|- ( ( ( J e. PConn /\ A e. X /\ B e. X ) /\ ( f e. ( II Cn J ) /\ ( ( f ` 0 ) = A /\ ( f ` 1 ) = B ) ) ) -> ( J pi1 ( f ` 1 ) ) = Q ) |
| 27 |
23 26
|
oveq12d |
|- ( ( ( J e. PConn /\ A e. X /\ B e. X ) /\ ( f e. ( II Cn J ) /\ ( ( f ` 0 ) = A /\ ( f ` 1 ) = B ) ) ) -> ( ( J pi1 ( f ` 0 ) ) GrpIso ( J pi1 ( f ` 1 ) ) ) = ( P GrpIso Q ) ) |
| 28 |
20 27
|
eleqtrd |
|- ( ( ( J e. PConn /\ A e. X /\ B e. X ) /\ ( f e. ( II Cn J ) /\ ( ( f ` 0 ) = A /\ ( f ` 1 ) = B ) ) ) -> ran ( h e. U. ( Base ` ( J pi1 ( f ` 0 ) ) ) |-> <. [ h ] ( ~=ph ` J ) , [ ( ( x e. ( 0 [,] 1 ) |-> ( f ` ( 1 - x ) ) ) ( *p ` J ) ( h ( *p ` J ) f ) ) ] ( ~=ph ` J ) >. ) e. ( P GrpIso Q ) ) |
| 29 |
|
brgici |
|- ( ran ( h e. U. ( Base ` ( J pi1 ( f ` 0 ) ) ) |-> <. [ h ] ( ~=ph ` J ) , [ ( ( x e. ( 0 [,] 1 ) |-> ( f ` ( 1 - x ) ) ) ( *p ` J ) ( h ( *p ` J ) f ) ) ] ( ~=ph ` J ) >. ) e. ( P GrpIso Q ) -> P ~=g Q ) |
| 30 |
28 29
|
syl |
|- ( ( ( J e. PConn /\ A e. X /\ B e. X ) /\ ( f e. ( II Cn J ) /\ ( ( f ` 0 ) = A /\ ( f ` 1 ) = B ) ) ) -> P ~=g Q ) |
| 31 |
6 30
|
rexlimddv |
|- ( ( J e. PConn /\ A e. X /\ B e. X ) -> P ~=g Q ) |