| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pconnpi1.x |  |-  X = U. J | 
						
							| 2 |  | pconnpi1.p |  |-  P = ( J pi1 A ) | 
						
							| 3 |  | pconnpi1.q |  |-  Q = ( J pi1 B ) | 
						
							| 4 |  | pconnpi1.s |  |-  S = ( Base ` P ) | 
						
							| 5 |  | pconnpi1.t |  |-  T = ( Base ` Q ) | 
						
							| 6 | 1 | pconncn |  |-  ( ( J e. PConn /\ A e. X /\ B e. X ) -> E. f e. ( II Cn J ) ( ( f ` 0 ) = A /\ ( f ` 1 ) = B ) ) | 
						
							| 7 |  | eqid |  |-  ( J pi1 ( f ` 0 ) ) = ( J pi1 ( f ` 0 ) ) | 
						
							| 8 |  | eqid |  |-  ( J pi1 ( f ` 1 ) ) = ( J pi1 ( f ` 1 ) ) | 
						
							| 9 |  | eqid |  |-  ( Base ` ( J pi1 ( f ` 0 ) ) ) = ( Base ` ( J pi1 ( f ` 0 ) ) ) | 
						
							| 10 |  | eqid |  |-  ran ( h e. U. ( Base ` ( J pi1 ( f ` 0 ) ) ) |-> <. [ h ] ( ~=ph ` J ) , [ ( ( x e. ( 0 [,] 1 ) |-> ( f ` ( 1 - x ) ) ) ( *p ` J ) ( h ( *p ` J ) f ) ) ] ( ~=ph ` J ) >. ) = ran ( h e. U. ( Base ` ( J pi1 ( f ` 0 ) ) ) |-> <. [ h ] ( ~=ph ` J ) , [ ( ( x e. ( 0 [,] 1 ) |-> ( f ` ( 1 - x ) ) ) ( *p ` J ) ( h ( *p ` J ) f ) ) ] ( ~=ph ` J ) >. ) | 
						
							| 11 |  | simpl1 |  |-  ( ( ( J e. PConn /\ A e. X /\ B e. X ) /\ ( f e. ( II Cn J ) /\ ( ( f ` 0 ) = A /\ ( f ` 1 ) = B ) ) ) -> J e. PConn ) | 
						
							| 12 |  | pconntop |  |-  ( J e. PConn -> J e. Top ) | 
						
							| 13 | 11 12 | syl |  |-  ( ( ( J e. PConn /\ A e. X /\ B e. X ) /\ ( f e. ( II Cn J ) /\ ( ( f ` 0 ) = A /\ ( f ` 1 ) = B ) ) ) -> J e. Top ) | 
						
							| 14 | 1 | toptopon |  |-  ( J e. Top <-> J e. ( TopOn ` X ) ) | 
						
							| 15 | 13 14 | sylib |  |-  ( ( ( J e. PConn /\ A e. X /\ B e. X ) /\ ( f e. ( II Cn J ) /\ ( ( f ` 0 ) = A /\ ( f ` 1 ) = B ) ) ) -> J e. ( TopOn ` X ) ) | 
						
							| 16 |  | simprl |  |-  ( ( ( J e. PConn /\ A e. X /\ B e. X ) /\ ( f e. ( II Cn J ) /\ ( ( f ` 0 ) = A /\ ( f ` 1 ) = B ) ) ) -> f e. ( II Cn J ) ) | 
						
							| 17 |  | oveq2 |  |-  ( x = y -> ( 1 - x ) = ( 1 - y ) ) | 
						
							| 18 | 17 | fveq2d |  |-  ( x = y -> ( f ` ( 1 - x ) ) = ( f ` ( 1 - y ) ) ) | 
						
							| 19 | 18 | cbvmptv |  |-  ( x e. ( 0 [,] 1 ) |-> ( f ` ( 1 - x ) ) ) = ( y e. ( 0 [,] 1 ) |-> ( f ` ( 1 - y ) ) ) | 
						
							| 20 | 7 8 9 10 15 16 19 | pi1xfrgim |  |-  ( ( ( J e. PConn /\ A e. X /\ B e. X ) /\ ( f e. ( II Cn J ) /\ ( ( f ` 0 ) = A /\ ( f ` 1 ) = B ) ) ) -> ran ( h e. U. ( Base ` ( J pi1 ( f ` 0 ) ) ) |-> <. [ h ] ( ~=ph ` J ) , [ ( ( x e. ( 0 [,] 1 ) |-> ( f ` ( 1 - x ) ) ) ( *p ` J ) ( h ( *p ` J ) f ) ) ] ( ~=ph ` J ) >. ) e. ( ( J pi1 ( f ` 0 ) ) GrpIso ( J pi1 ( f ` 1 ) ) ) ) | 
						
							| 21 |  | simprrl |  |-  ( ( ( J e. PConn /\ A e. X /\ B e. X ) /\ ( f e. ( II Cn J ) /\ ( ( f ` 0 ) = A /\ ( f ` 1 ) = B ) ) ) -> ( f ` 0 ) = A ) | 
						
							| 22 | 21 | oveq2d |  |-  ( ( ( J e. PConn /\ A e. X /\ B e. X ) /\ ( f e. ( II Cn J ) /\ ( ( f ` 0 ) = A /\ ( f ` 1 ) = B ) ) ) -> ( J pi1 ( f ` 0 ) ) = ( J pi1 A ) ) | 
						
							| 23 | 22 2 | eqtr4di |  |-  ( ( ( J e. PConn /\ A e. X /\ B e. X ) /\ ( f e. ( II Cn J ) /\ ( ( f ` 0 ) = A /\ ( f ` 1 ) = B ) ) ) -> ( J pi1 ( f ` 0 ) ) = P ) | 
						
							| 24 |  | simprrr |  |-  ( ( ( J e. PConn /\ A e. X /\ B e. X ) /\ ( f e. ( II Cn J ) /\ ( ( f ` 0 ) = A /\ ( f ` 1 ) = B ) ) ) -> ( f ` 1 ) = B ) | 
						
							| 25 | 24 | oveq2d |  |-  ( ( ( J e. PConn /\ A e. X /\ B e. X ) /\ ( f e. ( II Cn J ) /\ ( ( f ` 0 ) = A /\ ( f ` 1 ) = B ) ) ) -> ( J pi1 ( f ` 1 ) ) = ( J pi1 B ) ) | 
						
							| 26 | 25 3 | eqtr4di |  |-  ( ( ( J e. PConn /\ A e. X /\ B e. X ) /\ ( f e. ( II Cn J ) /\ ( ( f ` 0 ) = A /\ ( f ` 1 ) = B ) ) ) -> ( J pi1 ( f ` 1 ) ) = Q ) | 
						
							| 27 | 23 26 | oveq12d |  |-  ( ( ( J e. PConn /\ A e. X /\ B e. X ) /\ ( f e. ( II Cn J ) /\ ( ( f ` 0 ) = A /\ ( f ` 1 ) = B ) ) ) -> ( ( J pi1 ( f ` 0 ) ) GrpIso ( J pi1 ( f ` 1 ) ) ) = ( P GrpIso Q ) ) | 
						
							| 28 | 20 27 | eleqtrd |  |-  ( ( ( J e. PConn /\ A e. X /\ B e. X ) /\ ( f e. ( II Cn J ) /\ ( ( f ` 0 ) = A /\ ( f ` 1 ) = B ) ) ) -> ran ( h e. U. ( Base ` ( J pi1 ( f ` 0 ) ) ) |-> <. [ h ] ( ~=ph ` J ) , [ ( ( x e. ( 0 [,] 1 ) |-> ( f ` ( 1 - x ) ) ) ( *p ` J ) ( h ( *p ` J ) f ) ) ] ( ~=ph ` J ) >. ) e. ( P GrpIso Q ) ) | 
						
							| 29 |  | brgici |  |-  ( ran ( h e. U. ( Base ` ( J pi1 ( f ` 0 ) ) ) |-> <. [ h ] ( ~=ph ` J ) , [ ( ( x e. ( 0 [,] 1 ) |-> ( f ` ( 1 - x ) ) ) ( *p ` J ) ( h ( *p ` J ) f ) ) ] ( ~=ph ` J ) >. ) e. ( P GrpIso Q ) -> P ~=g Q ) | 
						
							| 30 | 28 29 | syl |  |-  ( ( ( J e. PConn /\ A e. X /\ B e. X ) /\ ( f e. ( II Cn J ) /\ ( ( f ` 0 ) = A /\ ( f ` 1 ) = B ) ) ) -> P ~=g Q ) | 
						
							| 31 | 6 30 | rexlimddv |  |-  ( ( J e. PConn /\ A e. X /\ B e. X ) -> P ~=g Q ) |