Step |
Hyp |
Ref |
Expression |
1 |
|
sconnpht2.1 |
|- ( ph -> J e. SConn ) |
2 |
|
sconnpht2.2 |
|- ( ph -> F e. ( II Cn J ) ) |
3 |
|
sconnpht2.3 |
|- ( ph -> G e. ( II Cn J ) ) |
4 |
|
sconnpht2.4 |
|- ( ph -> ( F ` 0 ) = ( G ` 0 ) ) |
5 |
|
sconnpht2.5 |
|- ( ph -> ( F ` 1 ) = ( G ` 1 ) ) |
6 |
|
eqid |
|- ( x e. ( 0 [,] 1 ) |-> ( G ` ( 1 - x ) ) ) = ( x e. ( 0 [,] 1 ) |-> ( G ` ( 1 - x ) ) ) |
7 |
6
|
pcorevcl |
|- ( G e. ( II Cn J ) -> ( ( x e. ( 0 [,] 1 ) |-> ( G ` ( 1 - x ) ) ) e. ( II Cn J ) /\ ( ( x e. ( 0 [,] 1 ) |-> ( G ` ( 1 - x ) ) ) ` 0 ) = ( G ` 1 ) /\ ( ( x e. ( 0 [,] 1 ) |-> ( G ` ( 1 - x ) ) ) ` 1 ) = ( G ` 0 ) ) ) |
8 |
3 7
|
syl |
|- ( ph -> ( ( x e. ( 0 [,] 1 ) |-> ( G ` ( 1 - x ) ) ) e. ( II Cn J ) /\ ( ( x e. ( 0 [,] 1 ) |-> ( G ` ( 1 - x ) ) ) ` 0 ) = ( G ` 1 ) /\ ( ( x e. ( 0 [,] 1 ) |-> ( G ` ( 1 - x ) ) ) ` 1 ) = ( G ` 0 ) ) ) |
9 |
8
|
simp1d |
|- ( ph -> ( x e. ( 0 [,] 1 ) |-> ( G ` ( 1 - x ) ) ) e. ( II Cn J ) ) |
10 |
8
|
simp2d |
|- ( ph -> ( ( x e. ( 0 [,] 1 ) |-> ( G ` ( 1 - x ) ) ) ` 0 ) = ( G ` 1 ) ) |
11 |
5 10
|
eqtr4d |
|- ( ph -> ( F ` 1 ) = ( ( x e. ( 0 [,] 1 ) |-> ( G ` ( 1 - x ) ) ) ` 0 ) ) |
12 |
2 9 11
|
pcocn |
|- ( ph -> ( F ( *p ` J ) ( x e. ( 0 [,] 1 ) |-> ( G ` ( 1 - x ) ) ) ) e. ( II Cn J ) ) |
13 |
2 9
|
pco0 |
|- ( ph -> ( ( F ( *p ` J ) ( x e. ( 0 [,] 1 ) |-> ( G ` ( 1 - x ) ) ) ) ` 0 ) = ( F ` 0 ) ) |
14 |
2 9
|
pco1 |
|- ( ph -> ( ( F ( *p ` J ) ( x e. ( 0 [,] 1 ) |-> ( G ` ( 1 - x ) ) ) ) ` 1 ) = ( ( x e. ( 0 [,] 1 ) |-> ( G ` ( 1 - x ) ) ) ` 1 ) ) |
15 |
8
|
simp3d |
|- ( ph -> ( ( x e. ( 0 [,] 1 ) |-> ( G ` ( 1 - x ) ) ) ` 1 ) = ( G ` 0 ) ) |
16 |
4 15
|
eqtr4d |
|- ( ph -> ( F ` 0 ) = ( ( x e. ( 0 [,] 1 ) |-> ( G ` ( 1 - x ) ) ) ` 1 ) ) |
17 |
14 16
|
eqtr4d |
|- ( ph -> ( ( F ( *p ` J ) ( x e. ( 0 [,] 1 ) |-> ( G ` ( 1 - x ) ) ) ) ` 1 ) = ( F ` 0 ) ) |
18 |
13 17
|
eqtr4d |
|- ( ph -> ( ( F ( *p ` J ) ( x e. ( 0 [,] 1 ) |-> ( G ` ( 1 - x ) ) ) ) ` 0 ) = ( ( F ( *p ` J ) ( x e. ( 0 [,] 1 ) |-> ( G ` ( 1 - x ) ) ) ) ` 1 ) ) |
19 |
|
sconnpht |
|- ( ( J e. SConn /\ ( F ( *p ` J ) ( x e. ( 0 [,] 1 ) |-> ( G ` ( 1 - x ) ) ) ) e. ( II Cn J ) /\ ( ( F ( *p ` J ) ( x e. ( 0 [,] 1 ) |-> ( G ` ( 1 - x ) ) ) ) ` 0 ) = ( ( F ( *p ` J ) ( x e. ( 0 [,] 1 ) |-> ( G ` ( 1 - x ) ) ) ) ` 1 ) ) -> ( F ( *p ` J ) ( x e. ( 0 [,] 1 ) |-> ( G ` ( 1 - x ) ) ) ) ( ~=ph ` J ) ( ( 0 [,] 1 ) X. { ( ( F ( *p ` J ) ( x e. ( 0 [,] 1 ) |-> ( G ` ( 1 - x ) ) ) ) ` 0 ) } ) ) |
20 |
1 12 18 19
|
syl3anc |
|- ( ph -> ( F ( *p ` J ) ( x e. ( 0 [,] 1 ) |-> ( G ` ( 1 - x ) ) ) ) ( ~=ph ` J ) ( ( 0 [,] 1 ) X. { ( ( F ( *p ` J ) ( x e. ( 0 [,] 1 ) |-> ( G ` ( 1 - x ) ) ) ) ` 0 ) } ) ) |
21 |
13
|
sneqd |
|- ( ph -> { ( ( F ( *p ` J ) ( x e. ( 0 [,] 1 ) |-> ( G ` ( 1 - x ) ) ) ) ` 0 ) } = { ( F ` 0 ) } ) |
22 |
21
|
xpeq2d |
|- ( ph -> ( ( 0 [,] 1 ) X. { ( ( F ( *p ` J ) ( x e. ( 0 [,] 1 ) |-> ( G ` ( 1 - x ) ) ) ) ` 0 ) } ) = ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) ) |
23 |
20 22
|
breqtrd |
|- ( ph -> ( F ( *p ` J ) ( x e. ( 0 [,] 1 ) |-> ( G ` ( 1 - x ) ) ) ) ( ~=ph ` J ) ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) ) |
24 |
|
eqid |
|- ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) = ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) |
25 |
6 24 2 3 4 5
|
pcophtb |
|- ( ph -> ( ( F ( *p ` J ) ( x e. ( 0 [,] 1 ) |-> ( G ` ( 1 - x ) ) ) ) ( ~=ph ` J ) ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) <-> F ( ~=ph ` J ) G ) ) |
26 |
23 25
|
mpbid |
|- ( ph -> F ( ~=ph ` J ) G ) |