| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sconnpht2.1 |  |-  ( ph -> J e. SConn ) | 
						
							| 2 |  | sconnpht2.2 |  |-  ( ph -> F e. ( II Cn J ) ) | 
						
							| 3 |  | sconnpht2.3 |  |-  ( ph -> G e. ( II Cn J ) ) | 
						
							| 4 |  | sconnpht2.4 |  |-  ( ph -> ( F ` 0 ) = ( G ` 0 ) ) | 
						
							| 5 |  | sconnpht2.5 |  |-  ( ph -> ( F ` 1 ) = ( G ` 1 ) ) | 
						
							| 6 |  | eqid |  |-  ( x e. ( 0 [,] 1 ) |-> ( G ` ( 1 - x ) ) ) = ( x e. ( 0 [,] 1 ) |-> ( G ` ( 1 - x ) ) ) | 
						
							| 7 | 6 | pcorevcl |  |-  ( G e. ( II Cn J ) -> ( ( x e. ( 0 [,] 1 ) |-> ( G ` ( 1 - x ) ) ) e. ( II Cn J ) /\ ( ( x e. ( 0 [,] 1 ) |-> ( G ` ( 1 - x ) ) ) ` 0 ) = ( G ` 1 ) /\ ( ( x e. ( 0 [,] 1 ) |-> ( G ` ( 1 - x ) ) ) ` 1 ) = ( G ` 0 ) ) ) | 
						
							| 8 | 3 7 | syl |  |-  ( ph -> ( ( x e. ( 0 [,] 1 ) |-> ( G ` ( 1 - x ) ) ) e. ( II Cn J ) /\ ( ( x e. ( 0 [,] 1 ) |-> ( G ` ( 1 - x ) ) ) ` 0 ) = ( G ` 1 ) /\ ( ( x e. ( 0 [,] 1 ) |-> ( G ` ( 1 - x ) ) ) ` 1 ) = ( G ` 0 ) ) ) | 
						
							| 9 | 8 | simp1d |  |-  ( ph -> ( x e. ( 0 [,] 1 ) |-> ( G ` ( 1 - x ) ) ) e. ( II Cn J ) ) | 
						
							| 10 | 8 | simp2d |  |-  ( ph -> ( ( x e. ( 0 [,] 1 ) |-> ( G ` ( 1 - x ) ) ) ` 0 ) = ( G ` 1 ) ) | 
						
							| 11 | 5 10 | eqtr4d |  |-  ( ph -> ( F ` 1 ) = ( ( x e. ( 0 [,] 1 ) |-> ( G ` ( 1 - x ) ) ) ` 0 ) ) | 
						
							| 12 | 2 9 11 | pcocn |  |-  ( ph -> ( F ( *p ` J ) ( x e. ( 0 [,] 1 ) |-> ( G ` ( 1 - x ) ) ) ) e. ( II Cn J ) ) | 
						
							| 13 | 2 9 | pco0 |  |-  ( ph -> ( ( F ( *p ` J ) ( x e. ( 0 [,] 1 ) |-> ( G ` ( 1 - x ) ) ) ) ` 0 ) = ( F ` 0 ) ) | 
						
							| 14 | 2 9 | pco1 |  |-  ( ph -> ( ( F ( *p ` J ) ( x e. ( 0 [,] 1 ) |-> ( G ` ( 1 - x ) ) ) ) ` 1 ) = ( ( x e. ( 0 [,] 1 ) |-> ( G ` ( 1 - x ) ) ) ` 1 ) ) | 
						
							| 15 | 8 | simp3d |  |-  ( ph -> ( ( x e. ( 0 [,] 1 ) |-> ( G ` ( 1 - x ) ) ) ` 1 ) = ( G ` 0 ) ) | 
						
							| 16 | 4 15 | eqtr4d |  |-  ( ph -> ( F ` 0 ) = ( ( x e. ( 0 [,] 1 ) |-> ( G ` ( 1 - x ) ) ) ` 1 ) ) | 
						
							| 17 | 14 16 | eqtr4d |  |-  ( ph -> ( ( F ( *p ` J ) ( x e. ( 0 [,] 1 ) |-> ( G ` ( 1 - x ) ) ) ) ` 1 ) = ( F ` 0 ) ) | 
						
							| 18 | 13 17 | eqtr4d |  |-  ( ph -> ( ( F ( *p ` J ) ( x e. ( 0 [,] 1 ) |-> ( G ` ( 1 - x ) ) ) ) ` 0 ) = ( ( F ( *p ` J ) ( x e. ( 0 [,] 1 ) |-> ( G ` ( 1 - x ) ) ) ) ` 1 ) ) | 
						
							| 19 |  | sconnpht |  |-  ( ( J e. SConn /\ ( F ( *p ` J ) ( x e. ( 0 [,] 1 ) |-> ( G ` ( 1 - x ) ) ) ) e. ( II Cn J ) /\ ( ( F ( *p ` J ) ( x e. ( 0 [,] 1 ) |-> ( G ` ( 1 - x ) ) ) ) ` 0 ) = ( ( F ( *p ` J ) ( x e. ( 0 [,] 1 ) |-> ( G ` ( 1 - x ) ) ) ) ` 1 ) ) -> ( F ( *p ` J ) ( x e. ( 0 [,] 1 ) |-> ( G ` ( 1 - x ) ) ) ) ( ~=ph ` J ) ( ( 0 [,] 1 ) X. { ( ( F ( *p ` J ) ( x e. ( 0 [,] 1 ) |-> ( G ` ( 1 - x ) ) ) ) ` 0 ) } ) ) | 
						
							| 20 | 1 12 18 19 | syl3anc |  |-  ( ph -> ( F ( *p ` J ) ( x e. ( 0 [,] 1 ) |-> ( G ` ( 1 - x ) ) ) ) ( ~=ph ` J ) ( ( 0 [,] 1 ) X. { ( ( F ( *p ` J ) ( x e. ( 0 [,] 1 ) |-> ( G ` ( 1 - x ) ) ) ) ` 0 ) } ) ) | 
						
							| 21 | 13 | sneqd |  |-  ( ph -> { ( ( F ( *p ` J ) ( x e. ( 0 [,] 1 ) |-> ( G ` ( 1 - x ) ) ) ) ` 0 ) } = { ( F ` 0 ) } ) | 
						
							| 22 | 21 | xpeq2d |  |-  ( ph -> ( ( 0 [,] 1 ) X. { ( ( F ( *p ` J ) ( x e. ( 0 [,] 1 ) |-> ( G ` ( 1 - x ) ) ) ) ` 0 ) } ) = ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) ) | 
						
							| 23 | 20 22 | breqtrd |  |-  ( ph -> ( F ( *p ` J ) ( x e. ( 0 [,] 1 ) |-> ( G ` ( 1 - x ) ) ) ) ( ~=ph ` J ) ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) ) | 
						
							| 24 |  | eqid |  |-  ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) = ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) | 
						
							| 25 | 6 24 2 3 4 5 | pcophtb |  |-  ( ph -> ( ( F ( *p ` J ) ( x e. ( 0 [,] 1 ) |-> ( G ` ( 1 - x ) ) ) ) ( ~=ph ` J ) ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) <-> F ( ~=ph ` J ) G ) ) | 
						
							| 26 | 23 25 | mpbid |  |-  ( ph -> F ( ~=ph ` J ) G ) |