| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sconnpi1.1 |
|- X = U. J |
| 2 |
|
sconntop |
|- ( J e. SConn -> J e. Top ) |
| 3 |
2
|
adantl |
|- ( ( Y e. X /\ J e. SConn ) -> J e. Top ) |
| 4 |
|
simpl |
|- ( ( Y e. X /\ J e. SConn ) -> Y e. X ) |
| 5 |
|
eqid |
|- ( J pi1 Y ) = ( J pi1 Y ) |
| 6 |
|
eqid |
|- ( Base ` ( J pi1 Y ) ) = ( Base ` ( J pi1 Y ) ) |
| 7 |
|
simpl |
|- ( ( J e. Top /\ Y e. X ) -> J e. Top ) |
| 8 |
1
|
toptopon |
|- ( J e. Top <-> J e. ( TopOn ` X ) ) |
| 9 |
7 8
|
sylib |
|- ( ( J e. Top /\ Y e. X ) -> J e. ( TopOn ` X ) ) |
| 10 |
|
simpr |
|- ( ( J e. Top /\ Y e. X ) -> Y e. X ) |
| 11 |
5 6 9 10
|
elpi1 |
|- ( ( J e. Top /\ Y e. X ) -> ( x e. ( Base ` ( J pi1 Y ) ) <-> E. f e. ( II Cn J ) ( ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) /\ x = [ f ] ( ~=ph ` J ) ) ) ) |
| 12 |
3 4 11
|
syl2anc |
|- ( ( Y e. X /\ J e. SConn ) -> ( x e. ( Base ` ( J pi1 Y ) ) <-> E. f e. ( II Cn J ) ( ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) /\ x = [ f ] ( ~=ph ` J ) ) ) ) |
| 13 |
|
phtpcer |
|- ( ~=ph ` J ) Er ( II Cn J ) |
| 14 |
13
|
a1i |
|- ( ( ( ( Y e. X /\ J e. SConn ) /\ f e. ( II Cn J ) ) /\ ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) ) -> ( ~=ph ` J ) Er ( II Cn J ) ) |
| 15 |
|
simpllr |
|- ( ( ( ( Y e. X /\ J e. SConn ) /\ f e. ( II Cn J ) ) /\ ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) ) -> J e. SConn ) |
| 16 |
|
simplr |
|- ( ( ( ( Y e. X /\ J e. SConn ) /\ f e. ( II Cn J ) ) /\ ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) ) -> f e. ( II Cn J ) ) |
| 17 |
|
simprl |
|- ( ( ( ( Y e. X /\ J e. SConn ) /\ f e. ( II Cn J ) ) /\ ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) ) -> ( f ` 0 ) = Y ) |
| 18 |
|
simprr |
|- ( ( ( ( Y e. X /\ J e. SConn ) /\ f e. ( II Cn J ) ) /\ ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) ) -> ( f ` 1 ) = Y ) |
| 19 |
17 18
|
eqtr4d |
|- ( ( ( ( Y e. X /\ J e. SConn ) /\ f e. ( II Cn J ) ) /\ ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) ) -> ( f ` 0 ) = ( f ` 1 ) ) |
| 20 |
|
sconnpht |
|- ( ( J e. SConn /\ f e. ( II Cn J ) /\ ( f ` 0 ) = ( f ` 1 ) ) -> f ( ~=ph ` J ) ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ) |
| 21 |
15 16 19 20
|
syl3anc |
|- ( ( ( ( Y e. X /\ J e. SConn ) /\ f e. ( II Cn J ) ) /\ ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) ) -> f ( ~=ph ` J ) ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ) |
| 22 |
17
|
sneqd |
|- ( ( ( ( Y e. X /\ J e. SConn ) /\ f e. ( II Cn J ) ) /\ ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) ) -> { ( f ` 0 ) } = { Y } ) |
| 23 |
22
|
xpeq2d |
|- ( ( ( ( Y e. X /\ J e. SConn ) /\ f e. ( II Cn J ) ) /\ ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) ) -> ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) = ( ( 0 [,] 1 ) X. { Y } ) ) |
| 24 |
21 23
|
breqtrd |
|- ( ( ( ( Y e. X /\ J e. SConn ) /\ f e. ( II Cn J ) ) /\ ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) ) -> f ( ~=ph ` J ) ( ( 0 [,] 1 ) X. { Y } ) ) |
| 25 |
14 24
|
erthi |
|- ( ( ( ( Y e. X /\ J e. SConn ) /\ f e. ( II Cn J ) ) /\ ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) ) -> [ f ] ( ~=ph ` J ) = [ ( ( 0 [,] 1 ) X. { Y } ) ] ( ~=ph ` J ) ) |
| 26 |
3 8
|
sylib |
|- ( ( Y e. X /\ J e. SConn ) -> J e. ( TopOn ` X ) ) |
| 27 |
|
eqid |
|- ( ( 0 [,] 1 ) X. { Y } ) = ( ( 0 [,] 1 ) X. { Y } ) |
| 28 |
5 27
|
pi1id |
|- ( ( J e. ( TopOn ` X ) /\ Y e. X ) -> [ ( ( 0 [,] 1 ) X. { Y } ) ] ( ~=ph ` J ) = ( 0g ` ( J pi1 Y ) ) ) |
| 29 |
26 4 28
|
syl2anc |
|- ( ( Y e. X /\ J e. SConn ) -> [ ( ( 0 [,] 1 ) X. { Y } ) ] ( ~=ph ` J ) = ( 0g ` ( J pi1 Y ) ) ) |
| 30 |
29
|
ad2antrr |
|- ( ( ( ( Y e. X /\ J e. SConn ) /\ f e. ( II Cn J ) ) /\ ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) ) -> [ ( ( 0 [,] 1 ) X. { Y } ) ] ( ~=ph ` J ) = ( 0g ` ( J pi1 Y ) ) ) |
| 31 |
25 30
|
eqtrd |
|- ( ( ( ( Y e. X /\ J e. SConn ) /\ f e. ( II Cn J ) ) /\ ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) ) -> [ f ] ( ~=ph ` J ) = ( 0g ` ( J pi1 Y ) ) ) |
| 32 |
|
velsn |
|- ( x e. { ( 0g ` ( J pi1 Y ) ) } <-> x = ( 0g ` ( J pi1 Y ) ) ) |
| 33 |
|
eqeq1 |
|- ( x = [ f ] ( ~=ph ` J ) -> ( x = ( 0g ` ( J pi1 Y ) ) <-> [ f ] ( ~=ph ` J ) = ( 0g ` ( J pi1 Y ) ) ) ) |
| 34 |
32 33
|
bitrid |
|- ( x = [ f ] ( ~=ph ` J ) -> ( x e. { ( 0g ` ( J pi1 Y ) ) } <-> [ f ] ( ~=ph ` J ) = ( 0g ` ( J pi1 Y ) ) ) ) |
| 35 |
31 34
|
syl5ibrcom |
|- ( ( ( ( Y e. X /\ J e. SConn ) /\ f e. ( II Cn J ) ) /\ ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) ) -> ( x = [ f ] ( ~=ph ` J ) -> x e. { ( 0g ` ( J pi1 Y ) ) } ) ) |
| 36 |
35
|
expimpd |
|- ( ( ( Y e. X /\ J e. SConn ) /\ f e. ( II Cn J ) ) -> ( ( ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) /\ x = [ f ] ( ~=ph ` J ) ) -> x e. { ( 0g ` ( J pi1 Y ) ) } ) ) |
| 37 |
36
|
rexlimdva |
|- ( ( Y e. X /\ J e. SConn ) -> ( E. f e. ( II Cn J ) ( ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) /\ x = [ f ] ( ~=ph ` J ) ) -> x e. { ( 0g ` ( J pi1 Y ) ) } ) ) |
| 38 |
12 37
|
sylbid |
|- ( ( Y e. X /\ J e. SConn ) -> ( x e. ( Base ` ( J pi1 Y ) ) -> x e. { ( 0g ` ( J pi1 Y ) ) } ) ) |
| 39 |
38
|
ssrdv |
|- ( ( Y e. X /\ J e. SConn ) -> ( Base ` ( J pi1 Y ) ) C_ { ( 0g ` ( J pi1 Y ) ) } ) |
| 40 |
5
|
pi1grp |
|- ( ( J e. ( TopOn ` X ) /\ Y e. X ) -> ( J pi1 Y ) e. Grp ) |
| 41 |
26 4 40
|
syl2anc |
|- ( ( Y e. X /\ J e. SConn ) -> ( J pi1 Y ) e. Grp ) |
| 42 |
|
eqid |
|- ( 0g ` ( J pi1 Y ) ) = ( 0g ` ( J pi1 Y ) ) |
| 43 |
6 42
|
grpidcl |
|- ( ( J pi1 Y ) e. Grp -> ( 0g ` ( J pi1 Y ) ) e. ( Base ` ( J pi1 Y ) ) ) |
| 44 |
41 43
|
syl |
|- ( ( Y e. X /\ J e. SConn ) -> ( 0g ` ( J pi1 Y ) ) e. ( Base ` ( J pi1 Y ) ) ) |
| 45 |
44
|
snssd |
|- ( ( Y e. X /\ J e. SConn ) -> { ( 0g ` ( J pi1 Y ) ) } C_ ( Base ` ( J pi1 Y ) ) ) |
| 46 |
39 45
|
eqssd |
|- ( ( Y e. X /\ J e. SConn ) -> ( Base ` ( J pi1 Y ) ) = { ( 0g ` ( J pi1 Y ) ) } ) |
| 47 |
|
fvex |
|- ( 0g ` ( J pi1 Y ) ) e. _V |
| 48 |
47
|
ensn1 |
|- { ( 0g ` ( J pi1 Y ) ) } ~~ 1o |
| 49 |
46 48
|
eqbrtrdi |
|- ( ( Y e. X /\ J e. SConn ) -> ( Base ` ( J pi1 Y ) ) ~~ 1o ) |
| 50 |
49
|
adantll |
|- ( ( ( J e. PConn /\ Y e. X ) /\ J e. SConn ) -> ( Base ` ( J pi1 Y ) ) ~~ 1o ) |
| 51 |
|
simpll |
|- ( ( ( J e. PConn /\ Y e. X ) /\ ( Base ` ( J pi1 Y ) ) ~~ 1o ) -> J e. PConn ) |
| 52 |
|
eqid |
|- ( J pi1 ( f ` 0 ) ) = ( J pi1 ( f ` 0 ) ) |
| 53 |
|
eqid |
|- ( Base ` ( J pi1 ( f ` 0 ) ) ) = ( Base ` ( J pi1 ( f ` 0 ) ) ) |
| 54 |
|
simplll |
|- ( ( ( ( J e. PConn /\ Y e. X ) /\ ( Base ` ( J pi1 Y ) ) ~~ 1o ) /\ ( f e. ( II Cn J ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> J e. PConn ) |
| 55 |
|
pconntop |
|- ( J e. PConn -> J e. Top ) |
| 56 |
54 55
|
syl |
|- ( ( ( ( J e. PConn /\ Y e. X ) /\ ( Base ` ( J pi1 Y ) ) ~~ 1o ) /\ ( f e. ( II Cn J ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> J e. Top ) |
| 57 |
56 8
|
sylib |
|- ( ( ( ( J e. PConn /\ Y e. X ) /\ ( Base ` ( J pi1 Y ) ) ~~ 1o ) /\ ( f e. ( II Cn J ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> J e. ( TopOn ` X ) ) |
| 58 |
|
simprl |
|- ( ( ( ( J e. PConn /\ Y e. X ) /\ ( Base ` ( J pi1 Y ) ) ~~ 1o ) /\ ( f e. ( II Cn J ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> f e. ( II Cn J ) ) |
| 59 |
|
iiuni |
|- ( 0 [,] 1 ) = U. II |
| 60 |
59 1
|
cnf |
|- ( f e. ( II Cn J ) -> f : ( 0 [,] 1 ) --> X ) |
| 61 |
58 60
|
syl |
|- ( ( ( ( J e. PConn /\ Y e. X ) /\ ( Base ` ( J pi1 Y ) ) ~~ 1o ) /\ ( f e. ( II Cn J ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> f : ( 0 [,] 1 ) --> X ) |
| 62 |
|
0elunit |
|- 0 e. ( 0 [,] 1 ) |
| 63 |
|
ffvelcdm |
|- ( ( f : ( 0 [,] 1 ) --> X /\ 0 e. ( 0 [,] 1 ) ) -> ( f ` 0 ) e. X ) |
| 64 |
61 62 63
|
sylancl |
|- ( ( ( ( J e. PConn /\ Y e. X ) /\ ( Base ` ( J pi1 Y ) ) ~~ 1o ) /\ ( f e. ( II Cn J ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( f ` 0 ) e. X ) |
| 65 |
|
eqidd |
|- ( ( ( ( J e. PConn /\ Y e. X ) /\ ( Base ` ( J pi1 Y ) ) ~~ 1o ) /\ ( f e. ( II Cn J ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( f ` 0 ) = ( f ` 0 ) ) |
| 66 |
|
simprr |
|- ( ( ( ( J e. PConn /\ Y e. X ) /\ ( Base ` ( J pi1 Y ) ) ~~ 1o ) /\ ( f e. ( II Cn J ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( f ` 0 ) = ( f ` 1 ) ) |
| 67 |
66
|
eqcomd |
|- ( ( ( ( J e. PConn /\ Y e. X ) /\ ( Base ` ( J pi1 Y ) ) ~~ 1o ) /\ ( f e. ( II Cn J ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( f ` 1 ) = ( f ` 0 ) ) |
| 68 |
52 53 57 64 58 65 67
|
elpi1i |
|- ( ( ( ( J e. PConn /\ Y e. X ) /\ ( Base ` ( J pi1 Y ) ) ~~ 1o ) /\ ( f e. ( II Cn J ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> [ f ] ( ~=ph ` J ) e. ( Base ` ( J pi1 ( f ` 0 ) ) ) ) |
| 69 |
|
eqid |
|- ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) = ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) |
| 70 |
69
|
pcoptcl |
|- ( ( J e. ( TopOn ` X ) /\ ( f ` 0 ) e. X ) -> ( ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) e. ( II Cn J ) /\ ( ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ` 0 ) = ( f ` 0 ) /\ ( ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ` 1 ) = ( f ` 0 ) ) ) |
| 71 |
57 64 70
|
syl2anc |
|- ( ( ( ( J e. PConn /\ Y e. X ) /\ ( Base ` ( J pi1 Y ) ) ~~ 1o ) /\ ( f e. ( II Cn J ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) e. ( II Cn J ) /\ ( ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ` 0 ) = ( f ` 0 ) /\ ( ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ` 1 ) = ( f ` 0 ) ) ) |
| 72 |
71
|
simp1d |
|- ( ( ( ( J e. PConn /\ Y e. X ) /\ ( Base ` ( J pi1 Y ) ) ~~ 1o ) /\ ( f e. ( II Cn J ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) e. ( II Cn J ) ) |
| 73 |
71
|
simp2d |
|- ( ( ( ( J e. PConn /\ Y e. X ) /\ ( Base ` ( J pi1 Y ) ) ~~ 1o ) /\ ( f e. ( II Cn J ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ` 0 ) = ( f ` 0 ) ) |
| 74 |
71
|
simp3d |
|- ( ( ( ( J e. PConn /\ Y e. X ) /\ ( Base ` ( J pi1 Y ) ) ~~ 1o ) /\ ( f e. ( II Cn J ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ` 1 ) = ( f ` 0 ) ) |
| 75 |
52 53 57 64 72 73 74
|
elpi1i |
|- ( ( ( ( J e. PConn /\ Y e. X ) /\ ( Base ` ( J pi1 Y ) ) ~~ 1o ) /\ ( f e. ( II Cn J ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> [ ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ] ( ~=ph ` J ) e. ( Base ` ( J pi1 ( f ` 0 ) ) ) ) |
| 76 |
|
simpllr |
|- ( ( ( ( J e. PConn /\ Y e. X ) /\ ( Base ` ( J pi1 Y ) ) ~~ 1o ) /\ ( f e. ( II Cn J ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> Y e. X ) |
| 77 |
1 52 5 53 6
|
pconnpi1 |
|- ( ( J e. PConn /\ ( f ` 0 ) e. X /\ Y e. X ) -> ( J pi1 ( f ` 0 ) ) ~=g ( J pi1 Y ) ) |
| 78 |
54 64 76 77
|
syl3anc |
|- ( ( ( ( J e. PConn /\ Y e. X ) /\ ( Base ` ( J pi1 Y ) ) ~~ 1o ) /\ ( f e. ( II Cn J ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( J pi1 ( f ` 0 ) ) ~=g ( J pi1 Y ) ) |
| 79 |
53 6
|
gicen |
|- ( ( J pi1 ( f ` 0 ) ) ~=g ( J pi1 Y ) -> ( Base ` ( J pi1 ( f ` 0 ) ) ) ~~ ( Base ` ( J pi1 Y ) ) ) |
| 80 |
78 79
|
syl |
|- ( ( ( ( J e. PConn /\ Y e. X ) /\ ( Base ` ( J pi1 Y ) ) ~~ 1o ) /\ ( f e. ( II Cn J ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( Base ` ( J pi1 ( f ` 0 ) ) ) ~~ ( Base ` ( J pi1 Y ) ) ) |
| 81 |
|
simplr |
|- ( ( ( ( J e. PConn /\ Y e. X ) /\ ( Base ` ( J pi1 Y ) ) ~~ 1o ) /\ ( f e. ( II Cn J ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( Base ` ( J pi1 Y ) ) ~~ 1o ) |
| 82 |
|
entr |
|- ( ( ( Base ` ( J pi1 ( f ` 0 ) ) ) ~~ ( Base ` ( J pi1 Y ) ) /\ ( Base ` ( J pi1 Y ) ) ~~ 1o ) -> ( Base ` ( J pi1 ( f ` 0 ) ) ) ~~ 1o ) |
| 83 |
80 81 82
|
syl2anc |
|- ( ( ( ( J e. PConn /\ Y e. X ) /\ ( Base ` ( J pi1 Y ) ) ~~ 1o ) /\ ( f e. ( II Cn J ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( Base ` ( J pi1 ( f ` 0 ) ) ) ~~ 1o ) |
| 84 |
|
en1eqsn |
|- ( ( [ ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ] ( ~=ph ` J ) e. ( Base ` ( J pi1 ( f ` 0 ) ) ) /\ ( Base ` ( J pi1 ( f ` 0 ) ) ) ~~ 1o ) -> ( Base ` ( J pi1 ( f ` 0 ) ) ) = { [ ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ] ( ~=ph ` J ) } ) |
| 85 |
75 83 84
|
syl2anc |
|- ( ( ( ( J e. PConn /\ Y e. X ) /\ ( Base ` ( J pi1 Y ) ) ~~ 1o ) /\ ( f e. ( II Cn J ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( Base ` ( J pi1 ( f ` 0 ) ) ) = { [ ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ] ( ~=ph ` J ) } ) |
| 86 |
68 85
|
eleqtrd |
|- ( ( ( ( J e. PConn /\ Y e. X ) /\ ( Base ` ( J pi1 Y ) ) ~~ 1o ) /\ ( f e. ( II Cn J ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> [ f ] ( ~=ph ` J ) e. { [ ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ] ( ~=ph ` J ) } ) |
| 87 |
|
elsni |
|- ( [ f ] ( ~=ph ` J ) e. { [ ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ] ( ~=ph ` J ) } -> [ f ] ( ~=ph ` J ) = [ ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ] ( ~=ph ` J ) ) |
| 88 |
86 87
|
syl |
|- ( ( ( ( J e. PConn /\ Y e. X ) /\ ( Base ` ( J pi1 Y ) ) ~~ 1o ) /\ ( f e. ( II Cn J ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> [ f ] ( ~=ph ` J ) = [ ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ] ( ~=ph ` J ) ) |
| 89 |
13
|
a1i |
|- ( ( ( ( J e. PConn /\ Y e. X ) /\ ( Base ` ( J pi1 Y ) ) ~~ 1o ) /\ ( f e. ( II Cn J ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( ~=ph ` J ) Er ( II Cn J ) ) |
| 90 |
89 58
|
erth |
|- ( ( ( ( J e. PConn /\ Y e. X ) /\ ( Base ` ( J pi1 Y ) ) ~~ 1o ) /\ ( f e. ( II Cn J ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( f ( ~=ph ` J ) ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) <-> [ f ] ( ~=ph ` J ) = [ ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ] ( ~=ph ` J ) ) ) |
| 91 |
88 90
|
mpbird |
|- ( ( ( ( J e. PConn /\ Y e. X ) /\ ( Base ` ( J pi1 Y ) ) ~~ 1o ) /\ ( f e. ( II Cn J ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> f ( ~=ph ` J ) ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ) |
| 92 |
91
|
expr |
|- ( ( ( ( J e. PConn /\ Y e. X ) /\ ( Base ` ( J pi1 Y ) ) ~~ 1o ) /\ f e. ( II Cn J ) ) -> ( ( f ` 0 ) = ( f ` 1 ) -> f ( ~=ph ` J ) ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ) ) |
| 93 |
92
|
ralrimiva |
|- ( ( ( J e. PConn /\ Y e. X ) /\ ( Base ` ( J pi1 Y ) ) ~~ 1o ) -> A. f e. ( II Cn J ) ( ( f ` 0 ) = ( f ` 1 ) -> f ( ~=ph ` J ) ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ) ) |
| 94 |
|
issconn |
|- ( J e. SConn <-> ( J e. PConn /\ A. f e. ( II Cn J ) ( ( f ` 0 ) = ( f ` 1 ) -> f ( ~=ph ` J ) ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ) ) ) |
| 95 |
51 93 94
|
sylanbrc |
|- ( ( ( J e. PConn /\ Y e. X ) /\ ( Base ` ( J pi1 Y ) ) ~~ 1o ) -> J e. SConn ) |
| 96 |
50 95
|
impbida |
|- ( ( J e. PConn /\ Y e. X ) -> ( J e. SConn <-> ( Base ` ( J pi1 Y ) ) ~~ 1o ) ) |