| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sconnpi1.1 |  |-  X = U. J | 
						
							| 2 |  | sconntop |  |-  ( J e. SConn -> J e. Top ) | 
						
							| 3 | 2 | adantl |  |-  ( ( Y e. X /\ J e. SConn ) -> J e. Top ) | 
						
							| 4 |  | simpl |  |-  ( ( Y e. X /\ J e. SConn ) -> Y e. X ) | 
						
							| 5 |  | eqid |  |-  ( J pi1 Y ) = ( J pi1 Y ) | 
						
							| 6 |  | eqid |  |-  ( Base ` ( J pi1 Y ) ) = ( Base ` ( J pi1 Y ) ) | 
						
							| 7 |  | simpl |  |-  ( ( J e. Top /\ Y e. X ) -> J e. Top ) | 
						
							| 8 | 1 | toptopon |  |-  ( J e. Top <-> J e. ( TopOn ` X ) ) | 
						
							| 9 | 7 8 | sylib |  |-  ( ( J e. Top /\ Y e. X ) -> J e. ( TopOn ` X ) ) | 
						
							| 10 |  | simpr |  |-  ( ( J e. Top /\ Y e. X ) -> Y e. X ) | 
						
							| 11 | 5 6 9 10 | elpi1 |  |-  ( ( J e. Top /\ Y e. X ) -> ( x e. ( Base ` ( J pi1 Y ) ) <-> E. f e. ( II Cn J ) ( ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) /\ x = [ f ] ( ~=ph ` J ) ) ) ) | 
						
							| 12 | 3 4 11 | syl2anc |  |-  ( ( Y e. X /\ J e. SConn ) -> ( x e. ( Base ` ( J pi1 Y ) ) <-> E. f e. ( II Cn J ) ( ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) /\ x = [ f ] ( ~=ph ` J ) ) ) ) | 
						
							| 13 |  | phtpcer |  |-  ( ~=ph ` J ) Er ( II Cn J ) | 
						
							| 14 | 13 | a1i |  |-  ( ( ( ( Y e. X /\ J e. SConn ) /\ f e. ( II Cn J ) ) /\ ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) ) -> ( ~=ph ` J ) Er ( II Cn J ) ) | 
						
							| 15 |  | simpllr |  |-  ( ( ( ( Y e. X /\ J e. SConn ) /\ f e. ( II Cn J ) ) /\ ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) ) -> J e. SConn ) | 
						
							| 16 |  | simplr |  |-  ( ( ( ( Y e. X /\ J e. SConn ) /\ f e. ( II Cn J ) ) /\ ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) ) -> f e. ( II Cn J ) ) | 
						
							| 17 |  | simprl |  |-  ( ( ( ( Y e. X /\ J e. SConn ) /\ f e. ( II Cn J ) ) /\ ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) ) -> ( f ` 0 ) = Y ) | 
						
							| 18 |  | simprr |  |-  ( ( ( ( Y e. X /\ J e. SConn ) /\ f e. ( II Cn J ) ) /\ ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) ) -> ( f ` 1 ) = Y ) | 
						
							| 19 | 17 18 | eqtr4d |  |-  ( ( ( ( Y e. X /\ J e. SConn ) /\ f e. ( II Cn J ) ) /\ ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) ) -> ( f ` 0 ) = ( f ` 1 ) ) | 
						
							| 20 |  | sconnpht |  |-  ( ( J e. SConn /\ f e. ( II Cn J ) /\ ( f ` 0 ) = ( f ` 1 ) ) -> f ( ~=ph ` J ) ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ) | 
						
							| 21 | 15 16 19 20 | syl3anc |  |-  ( ( ( ( Y e. X /\ J e. SConn ) /\ f e. ( II Cn J ) ) /\ ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) ) -> f ( ~=ph ` J ) ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ) | 
						
							| 22 | 17 | sneqd |  |-  ( ( ( ( Y e. X /\ J e. SConn ) /\ f e. ( II Cn J ) ) /\ ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) ) -> { ( f ` 0 ) } = { Y } ) | 
						
							| 23 | 22 | xpeq2d |  |-  ( ( ( ( Y e. X /\ J e. SConn ) /\ f e. ( II Cn J ) ) /\ ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) ) -> ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) = ( ( 0 [,] 1 ) X. { Y } ) ) | 
						
							| 24 | 21 23 | breqtrd |  |-  ( ( ( ( Y e. X /\ J e. SConn ) /\ f e. ( II Cn J ) ) /\ ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) ) -> f ( ~=ph ` J ) ( ( 0 [,] 1 ) X. { Y } ) ) | 
						
							| 25 | 14 24 | erthi |  |-  ( ( ( ( Y e. X /\ J e. SConn ) /\ f e. ( II Cn J ) ) /\ ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) ) -> [ f ] ( ~=ph ` J ) = [ ( ( 0 [,] 1 ) X. { Y } ) ] ( ~=ph ` J ) ) | 
						
							| 26 | 3 8 | sylib |  |-  ( ( Y e. X /\ J e. SConn ) -> J e. ( TopOn ` X ) ) | 
						
							| 27 |  | eqid |  |-  ( ( 0 [,] 1 ) X. { Y } ) = ( ( 0 [,] 1 ) X. { Y } ) | 
						
							| 28 | 5 27 | pi1id |  |-  ( ( J e. ( TopOn ` X ) /\ Y e. X ) -> [ ( ( 0 [,] 1 ) X. { Y } ) ] ( ~=ph ` J ) = ( 0g ` ( J pi1 Y ) ) ) | 
						
							| 29 | 26 4 28 | syl2anc |  |-  ( ( Y e. X /\ J e. SConn ) -> [ ( ( 0 [,] 1 ) X. { Y } ) ] ( ~=ph ` J ) = ( 0g ` ( J pi1 Y ) ) ) | 
						
							| 30 | 29 | ad2antrr |  |-  ( ( ( ( Y e. X /\ J e. SConn ) /\ f e. ( II Cn J ) ) /\ ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) ) -> [ ( ( 0 [,] 1 ) X. { Y } ) ] ( ~=ph ` J ) = ( 0g ` ( J pi1 Y ) ) ) | 
						
							| 31 | 25 30 | eqtrd |  |-  ( ( ( ( Y e. X /\ J e. SConn ) /\ f e. ( II Cn J ) ) /\ ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) ) -> [ f ] ( ~=ph ` J ) = ( 0g ` ( J pi1 Y ) ) ) | 
						
							| 32 |  | velsn |  |-  ( x e. { ( 0g ` ( J pi1 Y ) ) } <-> x = ( 0g ` ( J pi1 Y ) ) ) | 
						
							| 33 |  | eqeq1 |  |-  ( x = [ f ] ( ~=ph ` J ) -> ( x = ( 0g ` ( J pi1 Y ) ) <-> [ f ] ( ~=ph ` J ) = ( 0g ` ( J pi1 Y ) ) ) ) | 
						
							| 34 | 32 33 | bitrid |  |-  ( x = [ f ] ( ~=ph ` J ) -> ( x e. { ( 0g ` ( J pi1 Y ) ) } <-> [ f ] ( ~=ph ` J ) = ( 0g ` ( J pi1 Y ) ) ) ) | 
						
							| 35 | 31 34 | syl5ibrcom |  |-  ( ( ( ( Y e. X /\ J e. SConn ) /\ f e. ( II Cn J ) ) /\ ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) ) -> ( x = [ f ] ( ~=ph ` J ) -> x e. { ( 0g ` ( J pi1 Y ) ) } ) ) | 
						
							| 36 | 35 | expimpd |  |-  ( ( ( Y e. X /\ J e. SConn ) /\ f e. ( II Cn J ) ) -> ( ( ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) /\ x = [ f ] ( ~=ph ` J ) ) -> x e. { ( 0g ` ( J pi1 Y ) ) } ) ) | 
						
							| 37 | 36 | rexlimdva |  |-  ( ( Y e. X /\ J e. SConn ) -> ( E. f e. ( II Cn J ) ( ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) /\ x = [ f ] ( ~=ph ` J ) ) -> x e. { ( 0g ` ( J pi1 Y ) ) } ) ) | 
						
							| 38 | 12 37 | sylbid |  |-  ( ( Y e. X /\ J e. SConn ) -> ( x e. ( Base ` ( J pi1 Y ) ) -> x e. { ( 0g ` ( J pi1 Y ) ) } ) ) | 
						
							| 39 | 38 | ssrdv |  |-  ( ( Y e. X /\ J e. SConn ) -> ( Base ` ( J pi1 Y ) ) C_ { ( 0g ` ( J pi1 Y ) ) } ) | 
						
							| 40 | 5 | pi1grp |  |-  ( ( J e. ( TopOn ` X ) /\ Y e. X ) -> ( J pi1 Y ) e. Grp ) | 
						
							| 41 | 26 4 40 | syl2anc |  |-  ( ( Y e. X /\ J e. SConn ) -> ( J pi1 Y ) e. Grp ) | 
						
							| 42 |  | eqid |  |-  ( 0g ` ( J pi1 Y ) ) = ( 0g ` ( J pi1 Y ) ) | 
						
							| 43 | 6 42 | grpidcl |  |-  ( ( J pi1 Y ) e. Grp -> ( 0g ` ( J pi1 Y ) ) e. ( Base ` ( J pi1 Y ) ) ) | 
						
							| 44 | 41 43 | syl |  |-  ( ( Y e. X /\ J e. SConn ) -> ( 0g ` ( J pi1 Y ) ) e. ( Base ` ( J pi1 Y ) ) ) | 
						
							| 45 | 44 | snssd |  |-  ( ( Y e. X /\ J e. SConn ) -> { ( 0g ` ( J pi1 Y ) ) } C_ ( Base ` ( J pi1 Y ) ) ) | 
						
							| 46 | 39 45 | eqssd |  |-  ( ( Y e. X /\ J e. SConn ) -> ( Base ` ( J pi1 Y ) ) = { ( 0g ` ( J pi1 Y ) ) } ) | 
						
							| 47 |  | fvex |  |-  ( 0g ` ( J pi1 Y ) ) e. _V | 
						
							| 48 | 47 | ensn1 |  |-  { ( 0g ` ( J pi1 Y ) ) } ~~ 1o | 
						
							| 49 | 46 48 | eqbrtrdi |  |-  ( ( Y e. X /\ J e. SConn ) -> ( Base ` ( J pi1 Y ) ) ~~ 1o ) | 
						
							| 50 | 49 | adantll |  |-  ( ( ( J e. PConn /\ Y e. X ) /\ J e. SConn ) -> ( Base ` ( J pi1 Y ) ) ~~ 1o ) | 
						
							| 51 |  | simpll |  |-  ( ( ( J e. PConn /\ Y e. X ) /\ ( Base ` ( J pi1 Y ) ) ~~ 1o ) -> J e. PConn ) | 
						
							| 52 |  | eqid |  |-  ( J pi1 ( f ` 0 ) ) = ( J pi1 ( f ` 0 ) ) | 
						
							| 53 |  | eqid |  |-  ( Base ` ( J pi1 ( f ` 0 ) ) ) = ( Base ` ( J pi1 ( f ` 0 ) ) ) | 
						
							| 54 |  | simplll |  |-  ( ( ( ( J e. PConn /\ Y e. X ) /\ ( Base ` ( J pi1 Y ) ) ~~ 1o ) /\ ( f e. ( II Cn J ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> J e. PConn ) | 
						
							| 55 |  | pconntop |  |-  ( J e. PConn -> J e. Top ) | 
						
							| 56 | 54 55 | syl |  |-  ( ( ( ( J e. PConn /\ Y e. X ) /\ ( Base ` ( J pi1 Y ) ) ~~ 1o ) /\ ( f e. ( II Cn J ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> J e. Top ) | 
						
							| 57 | 56 8 | sylib |  |-  ( ( ( ( J e. PConn /\ Y e. X ) /\ ( Base ` ( J pi1 Y ) ) ~~ 1o ) /\ ( f e. ( II Cn J ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> J e. ( TopOn ` X ) ) | 
						
							| 58 |  | simprl |  |-  ( ( ( ( J e. PConn /\ Y e. X ) /\ ( Base ` ( J pi1 Y ) ) ~~ 1o ) /\ ( f e. ( II Cn J ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> f e. ( II Cn J ) ) | 
						
							| 59 |  | iiuni |  |-  ( 0 [,] 1 ) = U. II | 
						
							| 60 | 59 1 | cnf |  |-  ( f e. ( II Cn J ) -> f : ( 0 [,] 1 ) --> X ) | 
						
							| 61 | 58 60 | syl |  |-  ( ( ( ( J e. PConn /\ Y e. X ) /\ ( Base ` ( J pi1 Y ) ) ~~ 1o ) /\ ( f e. ( II Cn J ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> f : ( 0 [,] 1 ) --> X ) | 
						
							| 62 |  | 0elunit |  |-  0 e. ( 0 [,] 1 ) | 
						
							| 63 |  | ffvelcdm |  |-  ( ( f : ( 0 [,] 1 ) --> X /\ 0 e. ( 0 [,] 1 ) ) -> ( f ` 0 ) e. X ) | 
						
							| 64 | 61 62 63 | sylancl |  |-  ( ( ( ( J e. PConn /\ Y e. X ) /\ ( Base ` ( J pi1 Y ) ) ~~ 1o ) /\ ( f e. ( II Cn J ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( f ` 0 ) e. X ) | 
						
							| 65 |  | eqidd |  |-  ( ( ( ( J e. PConn /\ Y e. X ) /\ ( Base ` ( J pi1 Y ) ) ~~ 1o ) /\ ( f e. ( II Cn J ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( f ` 0 ) = ( f ` 0 ) ) | 
						
							| 66 |  | simprr |  |-  ( ( ( ( J e. PConn /\ Y e. X ) /\ ( Base ` ( J pi1 Y ) ) ~~ 1o ) /\ ( f e. ( II Cn J ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( f ` 0 ) = ( f ` 1 ) ) | 
						
							| 67 | 66 | eqcomd |  |-  ( ( ( ( J e. PConn /\ Y e. X ) /\ ( Base ` ( J pi1 Y ) ) ~~ 1o ) /\ ( f e. ( II Cn J ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( f ` 1 ) = ( f ` 0 ) ) | 
						
							| 68 | 52 53 57 64 58 65 67 | elpi1i |  |-  ( ( ( ( J e. PConn /\ Y e. X ) /\ ( Base ` ( J pi1 Y ) ) ~~ 1o ) /\ ( f e. ( II Cn J ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> [ f ] ( ~=ph ` J ) e. ( Base ` ( J pi1 ( f ` 0 ) ) ) ) | 
						
							| 69 |  | eqid |  |-  ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) = ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) | 
						
							| 70 | 69 | pcoptcl |  |-  ( ( J e. ( TopOn ` X ) /\ ( f ` 0 ) e. X ) -> ( ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) e. ( II Cn J ) /\ ( ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ` 0 ) = ( f ` 0 ) /\ ( ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ` 1 ) = ( f ` 0 ) ) ) | 
						
							| 71 | 57 64 70 | syl2anc |  |-  ( ( ( ( J e. PConn /\ Y e. X ) /\ ( Base ` ( J pi1 Y ) ) ~~ 1o ) /\ ( f e. ( II Cn J ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) e. ( II Cn J ) /\ ( ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ` 0 ) = ( f ` 0 ) /\ ( ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ` 1 ) = ( f ` 0 ) ) ) | 
						
							| 72 | 71 | simp1d |  |-  ( ( ( ( J e. PConn /\ Y e. X ) /\ ( Base ` ( J pi1 Y ) ) ~~ 1o ) /\ ( f e. ( II Cn J ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) e. ( II Cn J ) ) | 
						
							| 73 | 71 | simp2d |  |-  ( ( ( ( J e. PConn /\ Y e. X ) /\ ( Base ` ( J pi1 Y ) ) ~~ 1o ) /\ ( f e. ( II Cn J ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ` 0 ) = ( f ` 0 ) ) | 
						
							| 74 | 71 | simp3d |  |-  ( ( ( ( J e. PConn /\ Y e. X ) /\ ( Base ` ( J pi1 Y ) ) ~~ 1o ) /\ ( f e. ( II Cn J ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ` 1 ) = ( f ` 0 ) ) | 
						
							| 75 | 52 53 57 64 72 73 74 | elpi1i |  |-  ( ( ( ( J e. PConn /\ Y e. X ) /\ ( Base ` ( J pi1 Y ) ) ~~ 1o ) /\ ( f e. ( II Cn J ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> [ ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ] ( ~=ph ` J ) e. ( Base ` ( J pi1 ( f ` 0 ) ) ) ) | 
						
							| 76 |  | simpllr |  |-  ( ( ( ( J e. PConn /\ Y e. X ) /\ ( Base ` ( J pi1 Y ) ) ~~ 1o ) /\ ( f e. ( II Cn J ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> Y e. X ) | 
						
							| 77 | 1 52 5 53 6 | pconnpi1 |  |-  ( ( J e. PConn /\ ( f ` 0 ) e. X /\ Y e. X ) -> ( J pi1 ( f ` 0 ) ) ~=g ( J pi1 Y ) ) | 
						
							| 78 | 54 64 76 77 | syl3anc |  |-  ( ( ( ( J e. PConn /\ Y e. X ) /\ ( Base ` ( J pi1 Y ) ) ~~ 1o ) /\ ( f e. ( II Cn J ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( J pi1 ( f ` 0 ) ) ~=g ( J pi1 Y ) ) | 
						
							| 79 | 53 6 | gicen |  |-  ( ( J pi1 ( f ` 0 ) ) ~=g ( J pi1 Y ) -> ( Base ` ( J pi1 ( f ` 0 ) ) ) ~~ ( Base ` ( J pi1 Y ) ) ) | 
						
							| 80 | 78 79 | syl |  |-  ( ( ( ( J e. PConn /\ Y e. X ) /\ ( Base ` ( J pi1 Y ) ) ~~ 1o ) /\ ( f e. ( II Cn J ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( Base ` ( J pi1 ( f ` 0 ) ) ) ~~ ( Base ` ( J pi1 Y ) ) ) | 
						
							| 81 |  | simplr |  |-  ( ( ( ( J e. PConn /\ Y e. X ) /\ ( Base ` ( J pi1 Y ) ) ~~ 1o ) /\ ( f e. ( II Cn J ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( Base ` ( J pi1 Y ) ) ~~ 1o ) | 
						
							| 82 |  | entr |  |-  ( ( ( Base ` ( J pi1 ( f ` 0 ) ) ) ~~ ( Base ` ( J pi1 Y ) ) /\ ( Base ` ( J pi1 Y ) ) ~~ 1o ) -> ( Base ` ( J pi1 ( f ` 0 ) ) ) ~~ 1o ) | 
						
							| 83 | 80 81 82 | syl2anc |  |-  ( ( ( ( J e. PConn /\ Y e. X ) /\ ( Base ` ( J pi1 Y ) ) ~~ 1o ) /\ ( f e. ( II Cn J ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( Base ` ( J pi1 ( f ` 0 ) ) ) ~~ 1o ) | 
						
							| 84 |  | en1eqsn |  |-  ( ( [ ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ] ( ~=ph ` J ) e. ( Base ` ( J pi1 ( f ` 0 ) ) ) /\ ( Base ` ( J pi1 ( f ` 0 ) ) ) ~~ 1o ) -> ( Base ` ( J pi1 ( f ` 0 ) ) ) = { [ ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ] ( ~=ph ` J ) } ) | 
						
							| 85 | 75 83 84 | syl2anc |  |-  ( ( ( ( J e. PConn /\ Y e. X ) /\ ( Base ` ( J pi1 Y ) ) ~~ 1o ) /\ ( f e. ( II Cn J ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( Base ` ( J pi1 ( f ` 0 ) ) ) = { [ ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ] ( ~=ph ` J ) } ) | 
						
							| 86 | 68 85 | eleqtrd |  |-  ( ( ( ( J e. PConn /\ Y e. X ) /\ ( Base ` ( J pi1 Y ) ) ~~ 1o ) /\ ( f e. ( II Cn J ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> [ f ] ( ~=ph ` J ) e. { [ ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ] ( ~=ph ` J ) } ) | 
						
							| 87 |  | elsni |  |-  ( [ f ] ( ~=ph ` J ) e. { [ ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ] ( ~=ph ` J ) } -> [ f ] ( ~=ph ` J ) = [ ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ] ( ~=ph ` J ) ) | 
						
							| 88 | 86 87 | syl |  |-  ( ( ( ( J e. PConn /\ Y e. X ) /\ ( Base ` ( J pi1 Y ) ) ~~ 1o ) /\ ( f e. ( II Cn J ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> [ f ] ( ~=ph ` J ) = [ ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ] ( ~=ph ` J ) ) | 
						
							| 89 | 13 | a1i |  |-  ( ( ( ( J e. PConn /\ Y e. X ) /\ ( Base ` ( J pi1 Y ) ) ~~ 1o ) /\ ( f e. ( II Cn J ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( ~=ph ` J ) Er ( II Cn J ) ) | 
						
							| 90 | 89 58 | erth |  |-  ( ( ( ( J e. PConn /\ Y e. X ) /\ ( Base ` ( J pi1 Y ) ) ~~ 1o ) /\ ( f e. ( II Cn J ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( f ( ~=ph ` J ) ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) <-> [ f ] ( ~=ph ` J ) = [ ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ] ( ~=ph ` J ) ) ) | 
						
							| 91 | 88 90 | mpbird |  |-  ( ( ( ( J e. PConn /\ Y e. X ) /\ ( Base ` ( J pi1 Y ) ) ~~ 1o ) /\ ( f e. ( II Cn J ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> f ( ~=ph ` J ) ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ) | 
						
							| 92 | 91 | expr |  |-  ( ( ( ( J e. PConn /\ Y e. X ) /\ ( Base ` ( J pi1 Y ) ) ~~ 1o ) /\ f e. ( II Cn J ) ) -> ( ( f ` 0 ) = ( f ` 1 ) -> f ( ~=ph ` J ) ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ) ) | 
						
							| 93 | 92 | ralrimiva |  |-  ( ( ( J e. PConn /\ Y e. X ) /\ ( Base ` ( J pi1 Y ) ) ~~ 1o ) -> A. f e. ( II Cn J ) ( ( f ` 0 ) = ( f ` 1 ) -> f ( ~=ph ` J ) ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ) ) | 
						
							| 94 |  | issconn |  |-  ( J e. SConn <-> ( J e. PConn /\ A. f e. ( II Cn J ) ( ( f ` 0 ) = ( f ` 1 ) -> f ( ~=ph ` J ) ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ) ) ) | 
						
							| 95 | 51 93 94 | sylanbrc |  |-  ( ( ( J e. PConn /\ Y e. X ) /\ ( Base ` ( J pi1 Y ) ) ~~ 1o ) -> J e. SConn ) | 
						
							| 96 | 50 95 | impbida |  |-  ( ( J e. PConn /\ Y e. X ) -> ( J e. SConn <-> ( Base ` ( J pi1 Y ) ) ~~ 1o ) ) |