| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sconnpi1.1 |
⊢ 𝑋 = ∪ 𝐽 |
| 2 |
|
sconntop |
⊢ ( 𝐽 ∈ SConn → 𝐽 ∈ Top ) |
| 3 |
2
|
adantl |
⊢ ( ( 𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn ) → 𝐽 ∈ Top ) |
| 4 |
|
simpl |
⊢ ( ( 𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn ) → 𝑌 ∈ 𝑋 ) |
| 5 |
|
eqid |
⊢ ( 𝐽 π1 𝑌 ) = ( 𝐽 π1 𝑌 ) |
| 6 |
|
eqid |
⊢ ( Base ‘ ( 𝐽 π1 𝑌 ) ) = ( Base ‘ ( 𝐽 π1 𝑌 ) ) |
| 7 |
|
simpl |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ∈ 𝑋 ) → 𝐽 ∈ Top ) |
| 8 |
1
|
toptopon |
⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 9 |
7 8
|
sylib |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ∈ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 10 |
|
simpr |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ∈ 𝑋 ) → 𝑌 ∈ 𝑋 ) |
| 11 |
5 6 9 10
|
elpi1 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ∈ 𝑋 ) → ( 𝑥 ∈ ( Base ‘ ( 𝐽 π1 𝑌 ) ) ↔ ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( ( 𝑓 ‘ 0 ) = 𝑌 ∧ ( 𝑓 ‘ 1 ) = 𝑌 ) ∧ 𝑥 = [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ) ) ) |
| 12 |
3 4 11
|
syl2anc |
⊢ ( ( 𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn ) → ( 𝑥 ∈ ( Base ‘ ( 𝐽 π1 𝑌 ) ) ↔ ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( ( 𝑓 ‘ 0 ) = 𝑌 ∧ ( 𝑓 ‘ 1 ) = 𝑌 ) ∧ 𝑥 = [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ) ) ) |
| 13 |
|
phtpcer |
⊢ ( ≃ph ‘ 𝐽 ) Er ( II Cn 𝐽 ) |
| 14 |
13
|
a1i |
⊢ ( ( ( ( 𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn ) ∧ 𝑓 ∈ ( II Cn 𝐽 ) ) ∧ ( ( 𝑓 ‘ 0 ) = 𝑌 ∧ ( 𝑓 ‘ 1 ) = 𝑌 ) ) → ( ≃ph ‘ 𝐽 ) Er ( II Cn 𝐽 ) ) |
| 15 |
|
simpllr |
⊢ ( ( ( ( 𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn ) ∧ 𝑓 ∈ ( II Cn 𝐽 ) ) ∧ ( ( 𝑓 ‘ 0 ) = 𝑌 ∧ ( 𝑓 ‘ 1 ) = 𝑌 ) ) → 𝐽 ∈ SConn ) |
| 16 |
|
simplr |
⊢ ( ( ( ( 𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn ) ∧ 𝑓 ∈ ( II Cn 𝐽 ) ) ∧ ( ( 𝑓 ‘ 0 ) = 𝑌 ∧ ( 𝑓 ‘ 1 ) = 𝑌 ) ) → 𝑓 ∈ ( II Cn 𝐽 ) ) |
| 17 |
|
simprl |
⊢ ( ( ( ( 𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn ) ∧ 𝑓 ∈ ( II Cn 𝐽 ) ) ∧ ( ( 𝑓 ‘ 0 ) = 𝑌 ∧ ( 𝑓 ‘ 1 ) = 𝑌 ) ) → ( 𝑓 ‘ 0 ) = 𝑌 ) |
| 18 |
|
simprr |
⊢ ( ( ( ( 𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn ) ∧ 𝑓 ∈ ( II Cn 𝐽 ) ) ∧ ( ( 𝑓 ‘ 0 ) = 𝑌 ∧ ( 𝑓 ‘ 1 ) = 𝑌 ) ) → ( 𝑓 ‘ 1 ) = 𝑌 ) |
| 19 |
17 18
|
eqtr4d |
⊢ ( ( ( ( 𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn ) ∧ 𝑓 ∈ ( II Cn 𝐽 ) ) ∧ ( ( 𝑓 ‘ 0 ) = 𝑌 ∧ ( 𝑓 ‘ 1 ) = 𝑌 ) ) → ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) |
| 20 |
|
sconnpht |
⊢ ( ( 𝐽 ∈ SConn ∧ 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) → 𝑓 ( ≃ph ‘ 𝐽 ) ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ) |
| 21 |
15 16 19 20
|
syl3anc |
⊢ ( ( ( ( 𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn ) ∧ 𝑓 ∈ ( II Cn 𝐽 ) ) ∧ ( ( 𝑓 ‘ 0 ) = 𝑌 ∧ ( 𝑓 ‘ 1 ) = 𝑌 ) ) → 𝑓 ( ≃ph ‘ 𝐽 ) ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ) |
| 22 |
17
|
sneqd |
⊢ ( ( ( ( 𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn ) ∧ 𝑓 ∈ ( II Cn 𝐽 ) ) ∧ ( ( 𝑓 ‘ 0 ) = 𝑌 ∧ ( 𝑓 ‘ 1 ) = 𝑌 ) ) → { ( 𝑓 ‘ 0 ) } = { 𝑌 } ) |
| 23 |
22
|
xpeq2d |
⊢ ( ( ( ( 𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn ) ∧ 𝑓 ∈ ( II Cn 𝐽 ) ) ∧ ( ( 𝑓 ‘ 0 ) = 𝑌 ∧ ( 𝑓 ‘ 1 ) = 𝑌 ) ) → ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) = ( ( 0 [,] 1 ) × { 𝑌 } ) ) |
| 24 |
21 23
|
breqtrd |
⊢ ( ( ( ( 𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn ) ∧ 𝑓 ∈ ( II Cn 𝐽 ) ) ∧ ( ( 𝑓 ‘ 0 ) = 𝑌 ∧ ( 𝑓 ‘ 1 ) = 𝑌 ) ) → 𝑓 ( ≃ph ‘ 𝐽 ) ( ( 0 [,] 1 ) × { 𝑌 } ) ) |
| 25 |
14 24
|
erthi |
⊢ ( ( ( ( 𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn ) ∧ 𝑓 ∈ ( II Cn 𝐽 ) ) ∧ ( ( 𝑓 ‘ 0 ) = 𝑌 ∧ ( 𝑓 ‘ 1 ) = 𝑌 ) ) → [ 𝑓 ] ( ≃ph ‘ 𝐽 ) = [ ( ( 0 [,] 1 ) × { 𝑌 } ) ] ( ≃ph ‘ 𝐽 ) ) |
| 26 |
3 8
|
sylib |
⊢ ( ( 𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 27 |
|
eqid |
⊢ ( ( 0 [,] 1 ) × { 𝑌 } ) = ( ( 0 [,] 1 ) × { 𝑌 } ) |
| 28 |
5 27
|
pi1id |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑌 ∈ 𝑋 ) → [ ( ( 0 [,] 1 ) × { 𝑌 } ) ] ( ≃ph ‘ 𝐽 ) = ( 0g ‘ ( 𝐽 π1 𝑌 ) ) ) |
| 29 |
26 4 28
|
syl2anc |
⊢ ( ( 𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn ) → [ ( ( 0 [,] 1 ) × { 𝑌 } ) ] ( ≃ph ‘ 𝐽 ) = ( 0g ‘ ( 𝐽 π1 𝑌 ) ) ) |
| 30 |
29
|
ad2antrr |
⊢ ( ( ( ( 𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn ) ∧ 𝑓 ∈ ( II Cn 𝐽 ) ) ∧ ( ( 𝑓 ‘ 0 ) = 𝑌 ∧ ( 𝑓 ‘ 1 ) = 𝑌 ) ) → [ ( ( 0 [,] 1 ) × { 𝑌 } ) ] ( ≃ph ‘ 𝐽 ) = ( 0g ‘ ( 𝐽 π1 𝑌 ) ) ) |
| 31 |
25 30
|
eqtrd |
⊢ ( ( ( ( 𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn ) ∧ 𝑓 ∈ ( II Cn 𝐽 ) ) ∧ ( ( 𝑓 ‘ 0 ) = 𝑌 ∧ ( 𝑓 ‘ 1 ) = 𝑌 ) ) → [ 𝑓 ] ( ≃ph ‘ 𝐽 ) = ( 0g ‘ ( 𝐽 π1 𝑌 ) ) ) |
| 32 |
|
velsn |
⊢ ( 𝑥 ∈ { ( 0g ‘ ( 𝐽 π1 𝑌 ) ) } ↔ 𝑥 = ( 0g ‘ ( 𝐽 π1 𝑌 ) ) ) |
| 33 |
|
eqeq1 |
⊢ ( 𝑥 = [ 𝑓 ] ( ≃ph ‘ 𝐽 ) → ( 𝑥 = ( 0g ‘ ( 𝐽 π1 𝑌 ) ) ↔ [ 𝑓 ] ( ≃ph ‘ 𝐽 ) = ( 0g ‘ ( 𝐽 π1 𝑌 ) ) ) ) |
| 34 |
32 33
|
bitrid |
⊢ ( 𝑥 = [ 𝑓 ] ( ≃ph ‘ 𝐽 ) → ( 𝑥 ∈ { ( 0g ‘ ( 𝐽 π1 𝑌 ) ) } ↔ [ 𝑓 ] ( ≃ph ‘ 𝐽 ) = ( 0g ‘ ( 𝐽 π1 𝑌 ) ) ) ) |
| 35 |
31 34
|
syl5ibrcom |
⊢ ( ( ( ( 𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn ) ∧ 𝑓 ∈ ( II Cn 𝐽 ) ) ∧ ( ( 𝑓 ‘ 0 ) = 𝑌 ∧ ( 𝑓 ‘ 1 ) = 𝑌 ) ) → ( 𝑥 = [ 𝑓 ] ( ≃ph ‘ 𝐽 ) → 𝑥 ∈ { ( 0g ‘ ( 𝐽 π1 𝑌 ) ) } ) ) |
| 36 |
35
|
expimpd |
⊢ ( ( ( 𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn ) ∧ 𝑓 ∈ ( II Cn 𝐽 ) ) → ( ( ( ( 𝑓 ‘ 0 ) = 𝑌 ∧ ( 𝑓 ‘ 1 ) = 𝑌 ) ∧ 𝑥 = [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ) → 𝑥 ∈ { ( 0g ‘ ( 𝐽 π1 𝑌 ) ) } ) ) |
| 37 |
36
|
rexlimdva |
⊢ ( ( 𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn ) → ( ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( ( 𝑓 ‘ 0 ) = 𝑌 ∧ ( 𝑓 ‘ 1 ) = 𝑌 ) ∧ 𝑥 = [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ) → 𝑥 ∈ { ( 0g ‘ ( 𝐽 π1 𝑌 ) ) } ) ) |
| 38 |
12 37
|
sylbid |
⊢ ( ( 𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn ) → ( 𝑥 ∈ ( Base ‘ ( 𝐽 π1 𝑌 ) ) → 𝑥 ∈ { ( 0g ‘ ( 𝐽 π1 𝑌 ) ) } ) ) |
| 39 |
38
|
ssrdv |
⊢ ( ( 𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn ) → ( Base ‘ ( 𝐽 π1 𝑌 ) ) ⊆ { ( 0g ‘ ( 𝐽 π1 𝑌 ) ) } ) |
| 40 |
5
|
pi1grp |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑌 ∈ 𝑋 ) → ( 𝐽 π1 𝑌 ) ∈ Grp ) |
| 41 |
26 4 40
|
syl2anc |
⊢ ( ( 𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn ) → ( 𝐽 π1 𝑌 ) ∈ Grp ) |
| 42 |
|
eqid |
⊢ ( 0g ‘ ( 𝐽 π1 𝑌 ) ) = ( 0g ‘ ( 𝐽 π1 𝑌 ) ) |
| 43 |
6 42
|
grpidcl |
⊢ ( ( 𝐽 π1 𝑌 ) ∈ Grp → ( 0g ‘ ( 𝐽 π1 𝑌 ) ) ∈ ( Base ‘ ( 𝐽 π1 𝑌 ) ) ) |
| 44 |
41 43
|
syl |
⊢ ( ( 𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn ) → ( 0g ‘ ( 𝐽 π1 𝑌 ) ) ∈ ( Base ‘ ( 𝐽 π1 𝑌 ) ) ) |
| 45 |
44
|
snssd |
⊢ ( ( 𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn ) → { ( 0g ‘ ( 𝐽 π1 𝑌 ) ) } ⊆ ( Base ‘ ( 𝐽 π1 𝑌 ) ) ) |
| 46 |
39 45
|
eqssd |
⊢ ( ( 𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn ) → ( Base ‘ ( 𝐽 π1 𝑌 ) ) = { ( 0g ‘ ( 𝐽 π1 𝑌 ) ) } ) |
| 47 |
|
fvex |
⊢ ( 0g ‘ ( 𝐽 π1 𝑌 ) ) ∈ V |
| 48 |
47
|
ensn1 |
⊢ { ( 0g ‘ ( 𝐽 π1 𝑌 ) ) } ≈ 1o |
| 49 |
46 48
|
eqbrtrdi |
⊢ ( ( 𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn ) → ( Base ‘ ( 𝐽 π1 𝑌 ) ) ≈ 1o ) |
| 50 |
49
|
adantll |
⊢ ( ( ( 𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋 ) ∧ 𝐽 ∈ SConn ) → ( Base ‘ ( 𝐽 π1 𝑌 ) ) ≈ 1o ) |
| 51 |
|
simpll |
⊢ ( ( ( 𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋 ) ∧ ( Base ‘ ( 𝐽 π1 𝑌 ) ) ≈ 1o ) → 𝐽 ∈ PConn ) |
| 52 |
|
eqid |
⊢ ( 𝐽 π1 ( 𝑓 ‘ 0 ) ) = ( 𝐽 π1 ( 𝑓 ‘ 0 ) ) |
| 53 |
|
eqid |
⊢ ( Base ‘ ( 𝐽 π1 ( 𝑓 ‘ 0 ) ) ) = ( Base ‘ ( 𝐽 π1 ( 𝑓 ‘ 0 ) ) ) |
| 54 |
|
simplll |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋 ) ∧ ( Base ‘ ( 𝐽 π1 𝑌 ) ) ≈ 1o ) ∧ ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → 𝐽 ∈ PConn ) |
| 55 |
|
pconntop |
⊢ ( 𝐽 ∈ PConn → 𝐽 ∈ Top ) |
| 56 |
54 55
|
syl |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋 ) ∧ ( Base ‘ ( 𝐽 π1 𝑌 ) ) ≈ 1o ) ∧ ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → 𝐽 ∈ Top ) |
| 57 |
56 8
|
sylib |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋 ) ∧ ( Base ‘ ( 𝐽 π1 𝑌 ) ) ≈ 1o ) ∧ ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 58 |
|
simprl |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋 ) ∧ ( Base ‘ ( 𝐽 π1 𝑌 ) ) ≈ 1o ) ∧ ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → 𝑓 ∈ ( II Cn 𝐽 ) ) |
| 59 |
|
iiuni |
⊢ ( 0 [,] 1 ) = ∪ II |
| 60 |
59 1
|
cnf |
⊢ ( 𝑓 ∈ ( II Cn 𝐽 ) → 𝑓 : ( 0 [,] 1 ) ⟶ 𝑋 ) |
| 61 |
58 60
|
syl |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋 ) ∧ ( Base ‘ ( 𝐽 π1 𝑌 ) ) ≈ 1o ) ∧ ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → 𝑓 : ( 0 [,] 1 ) ⟶ 𝑋 ) |
| 62 |
|
0elunit |
⊢ 0 ∈ ( 0 [,] 1 ) |
| 63 |
|
ffvelcdm |
⊢ ( ( 𝑓 : ( 0 [,] 1 ) ⟶ 𝑋 ∧ 0 ∈ ( 0 [,] 1 ) ) → ( 𝑓 ‘ 0 ) ∈ 𝑋 ) |
| 64 |
61 62 63
|
sylancl |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋 ) ∧ ( Base ‘ ( 𝐽 π1 𝑌 ) ) ≈ 1o ) ∧ ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → ( 𝑓 ‘ 0 ) ∈ 𝑋 ) |
| 65 |
|
eqidd |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋 ) ∧ ( Base ‘ ( 𝐽 π1 𝑌 ) ) ≈ 1o ) ∧ ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 0 ) ) |
| 66 |
|
simprr |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋 ) ∧ ( Base ‘ ( 𝐽 π1 𝑌 ) ) ≈ 1o ) ∧ ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) |
| 67 |
66
|
eqcomd |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋 ) ∧ ( Base ‘ ( 𝐽 π1 𝑌 ) ) ≈ 1o ) ∧ ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → ( 𝑓 ‘ 1 ) = ( 𝑓 ‘ 0 ) ) |
| 68 |
52 53 57 64 58 65 67
|
elpi1i |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋 ) ∧ ( Base ‘ ( 𝐽 π1 𝑌 ) ) ≈ 1o ) ∧ ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ∈ ( Base ‘ ( 𝐽 π1 ( 𝑓 ‘ 0 ) ) ) ) |
| 69 |
|
eqid |
⊢ ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) = ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) |
| 70 |
69
|
pcoptcl |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝑓 ‘ 0 ) ∈ 𝑋 ) → ( ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ∈ ( II Cn 𝐽 ) ∧ ( ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ‘ 0 ) = ( 𝑓 ‘ 0 ) ∧ ( ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ‘ 1 ) = ( 𝑓 ‘ 0 ) ) ) |
| 71 |
57 64 70
|
syl2anc |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋 ) ∧ ( Base ‘ ( 𝐽 π1 𝑌 ) ) ≈ 1o ) ∧ ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → ( ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ∈ ( II Cn 𝐽 ) ∧ ( ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ‘ 0 ) = ( 𝑓 ‘ 0 ) ∧ ( ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ‘ 1 ) = ( 𝑓 ‘ 0 ) ) ) |
| 72 |
71
|
simp1d |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋 ) ∧ ( Base ‘ ( 𝐽 π1 𝑌 ) ) ≈ 1o ) ∧ ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ∈ ( II Cn 𝐽 ) ) |
| 73 |
71
|
simp2d |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋 ) ∧ ( Base ‘ ( 𝐽 π1 𝑌 ) ) ≈ 1o ) ∧ ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → ( ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ‘ 0 ) = ( 𝑓 ‘ 0 ) ) |
| 74 |
71
|
simp3d |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋 ) ∧ ( Base ‘ ( 𝐽 π1 𝑌 ) ) ≈ 1o ) ∧ ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → ( ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ‘ 1 ) = ( 𝑓 ‘ 0 ) ) |
| 75 |
52 53 57 64 72 73 74
|
elpi1i |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋 ) ∧ ( Base ‘ ( 𝐽 π1 𝑌 ) ) ≈ 1o ) ∧ ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → [ ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ] ( ≃ph ‘ 𝐽 ) ∈ ( Base ‘ ( 𝐽 π1 ( 𝑓 ‘ 0 ) ) ) ) |
| 76 |
|
simpllr |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋 ) ∧ ( Base ‘ ( 𝐽 π1 𝑌 ) ) ≈ 1o ) ∧ ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → 𝑌 ∈ 𝑋 ) |
| 77 |
1 52 5 53 6
|
pconnpi1 |
⊢ ( ( 𝐽 ∈ PConn ∧ ( 𝑓 ‘ 0 ) ∈ 𝑋 ∧ 𝑌 ∈ 𝑋 ) → ( 𝐽 π1 ( 𝑓 ‘ 0 ) ) ≃𝑔 ( 𝐽 π1 𝑌 ) ) |
| 78 |
54 64 76 77
|
syl3anc |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋 ) ∧ ( Base ‘ ( 𝐽 π1 𝑌 ) ) ≈ 1o ) ∧ ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → ( 𝐽 π1 ( 𝑓 ‘ 0 ) ) ≃𝑔 ( 𝐽 π1 𝑌 ) ) |
| 79 |
53 6
|
gicen |
⊢ ( ( 𝐽 π1 ( 𝑓 ‘ 0 ) ) ≃𝑔 ( 𝐽 π1 𝑌 ) → ( Base ‘ ( 𝐽 π1 ( 𝑓 ‘ 0 ) ) ) ≈ ( Base ‘ ( 𝐽 π1 𝑌 ) ) ) |
| 80 |
78 79
|
syl |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋 ) ∧ ( Base ‘ ( 𝐽 π1 𝑌 ) ) ≈ 1o ) ∧ ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → ( Base ‘ ( 𝐽 π1 ( 𝑓 ‘ 0 ) ) ) ≈ ( Base ‘ ( 𝐽 π1 𝑌 ) ) ) |
| 81 |
|
simplr |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋 ) ∧ ( Base ‘ ( 𝐽 π1 𝑌 ) ) ≈ 1o ) ∧ ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → ( Base ‘ ( 𝐽 π1 𝑌 ) ) ≈ 1o ) |
| 82 |
|
entr |
⊢ ( ( ( Base ‘ ( 𝐽 π1 ( 𝑓 ‘ 0 ) ) ) ≈ ( Base ‘ ( 𝐽 π1 𝑌 ) ) ∧ ( Base ‘ ( 𝐽 π1 𝑌 ) ) ≈ 1o ) → ( Base ‘ ( 𝐽 π1 ( 𝑓 ‘ 0 ) ) ) ≈ 1o ) |
| 83 |
80 81 82
|
syl2anc |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋 ) ∧ ( Base ‘ ( 𝐽 π1 𝑌 ) ) ≈ 1o ) ∧ ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → ( Base ‘ ( 𝐽 π1 ( 𝑓 ‘ 0 ) ) ) ≈ 1o ) |
| 84 |
|
en1eqsn |
⊢ ( ( [ ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ] ( ≃ph ‘ 𝐽 ) ∈ ( Base ‘ ( 𝐽 π1 ( 𝑓 ‘ 0 ) ) ) ∧ ( Base ‘ ( 𝐽 π1 ( 𝑓 ‘ 0 ) ) ) ≈ 1o ) → ( Base ‘ ( 𝐽 π1 ( 𝑓 ‘ 0 ) ) ) = { [ ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ] ( ≃ph ‘ 𝐽 ) } ) |
| 85 |
75 83 84
|
syl2anc |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋 ) ∧ ( Base ‘ ( 𝐽 π1 𝑌 ) ) ≈ 1o ) ∧ ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → ( Base ‘ ( 𝐽 π1 ( 𝑓 ‘ 0 ) ) ) = { [ ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ] ( ≃ph ‘ 𝐽 ) } ) |
| 86 |
68 85
|
eleqtrd |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋 ) ∧ ( Base ‘ ( 𝐽 π1 𝑌 ) ) ≈ 1o ) ∧ ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ∈ { [ ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ] ( ≃ph ‘ 𝐽 ) } ) |
| 87 |
|
elsni |
⊢ ( [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ∈ { [ ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ] ( ≃ph ‘ 𝐽 ) } → [ 𝑓 ] ( ≃ph ‘ 𝐽 ) = [ ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ] ( ≃ph ‘ 𝐽 ) ) |
| 88 |
86 87
|
syl |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋 ) ∧ ( Base ‘ ( 𝐽 π1 𝑌 ) ) ≈ 1o ) ∧ ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → [ 𝑓 ] ( ≃ph ‘ 𝐽 ) = [ ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ] ( ≃ph ‘ 𝐽 ) ) |
| 89 |
13
|
a1i |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋 ) ∧ ( Base ‘ ( 𝐽 π1 𝑌 ) ) ≈ 1o ) ∧ ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → ( ≃ph ‘ 𝐽 ) Er ( II Cn 𝐽 ) ) |
| 90 |
89 58
|
erth |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋 ) ∧ ( Base ‘ ( 𝐽 π1 𝑌 ) ) ≈ 1o ) ∧ ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → ( 𝑓 ( ≃ph ‘ 𝐽 ) ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ↔ [ 𝑓 ] ( ≃ph ‘ 𝐽 ) = [ ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ] ( ≃ph ‘ 𝐽 ) ) ) |
| 91 |
88 90
|
mpbird |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋 ) ∧ ( Base ‘ ( 𝐽 π1 𝑌 ) ) ≈ 1o ) ∧ ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → 𝑓 ( ≃ph ‘ 𝐽 ) ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ) |
| 92 |
91
|
expr |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋 ) ∧ ( Base ‘ ( 𝐽 π1 𝑌 ) ) ≈ 1o ) ∧ 𝑓 ∈ ( II Cn 𝐽 ) ) → ( ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) → 𝑓 ( ≃ph ‘ 𝐽 ) ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ) ) |
| 93 |
92
|
ralrimiva |
⊢ ( ( ( 𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋 ) ∧ ( Base ‘ ( 𝐽 π1 𝑌 ) ) ≈ 1o ) → ∀ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) → 𝑓 ( ≃ph ‘ 𝐽 ) ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ) ) |
| 94 |
|
issconn |
⊢ ( 𝐽 ∈ SConn ↔ ( 𝐽 ∈ PConn ∧ ∀ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) → 𝑓 ( ≃ph ‘ 𝐽 ) ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ) ) ) |
| 95 |
51 93 94
|
sylanbrc |
⊢ ( ( ( 𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋 ) ∧ ( Base ‘ ( 𝐽 π1 𝑌 ) ) ≈ 1o ) → 𝐽 ∈ SConn ) |
| 96 |
50 95
|
impbida |
⊢ ( ( 𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋 ) → ( 𝐽 ∈ SConn ↔ ( Base ‘ ( 𝐽 π1 𝑌 ) ) ≈ 1o ) ) |