| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sconnpi1.1 | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 2 |  | sconntop | ⊢ ( 𝐽  ∈  SConn  →  𝐽  ∈  Top ) | 
						
							| 3 | 2 | adantl | ⊢ ( ( 𝑌  ∈  𝑋  ∧  𝐽  ∈  SConn )  →  𝐽  ∈  Top ) | 
						
							| 4 |  | simpl | ⊢ ( ( 𝑌  ∈  𝑋  ∧  𝐽  ∈  SConn )  →  𝑌  ∈  𝑋 ) | 
						
							| 5 |  | eqid | ⊢ ( 𝐽  π1  𝑌 )  =  ( 𝐽  π1  𝑌 ) | 
						
							| 6 |  | eqid | ⊢ ( Base ‘ ( 𝐽  π1  𝑌 ) )  =  ( Base ‘ ( 𝐽  π1  𝑌 ) ) | 
						
							| 7 |  | simpl | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑌  ∈  𝑋 )  →  𝐽  ∈  Top ) | 
						
							| 8 | 1 | toptopon | ⊢ ( 𝐽  ∈  Top  ↔  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 9 | 7 8 | sylib | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑌  ∈  𝑋 )  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 10 |  | simpr | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑌  ∈  𝑋 )  →  𝑌  ∈  𝑋 ) | 
						
							| 11 | 5 6 9 10 | elpi1 | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑌  ∈  𝑋 )  →  ( 𝑥  ∈  ( Base ‘ ( 𝐽  π1  𝑌 ) )  ↔  ∃ 𝑓  ∈  ( II  Cn  𝐽 ) ( ( ( 𝑓 ‘ 0 )  =  𝑌  ∧  ( 𝑓 ‘ 1 )  =  𝑌 )  ∧  𝑥  =  [ 𝑓 ] (  ≃ph ‘ 𝐽 ) ) ) ) | 
						
							| 12 | 3 4 11 | syl2anc | ⊢ ( ( 𝑌  ∈  𝑋  ∧  𝐽  ∈  SConn )  →  ( 𝑥  ∈  ( Base ‘ ( 𝐽  π1  𝑌 ) )  ↔  ∃ 𝑓  ∈  ( II  Cn  𝐽 ) ( ( ( 𝑓 ‘ 0 )  =  𝑌  ∧  ( 𝑓 ‘ 1 )  =  𝑌 )  ∧  𝑥  =  [ 𝑓 ] (  ≃ph ‘ 𝐽 ) ) ) ) | 
						
							| 13 |  | phtpcer | ⊢ (  ≃ph ‘ 𝐽 )  Er  ( II  Cn  𝐽 ) | 
						
							| 14 | 13 | a1i | ⊢ ( ( ( ( 𝑌  ∈  𝑋  ∧  𝐽  ∈  SConn )  ∧  𝑓  ∈  ( II  Cn  𝐽 ) )  ∧  ( ( 𝑓 ‘ 0 )  =  𝑌  ∧  ( 𝑓 ‘ 1 )  =  𝑌 ) )  →  (  ≃ph ‘ 𝐽 )  Er  ( II  Cn  𝐽 ) ) | 
						
							| 15 |  | simpllr | ⊢ ( ( ( ( 𝑌  ∈  𝑋  ∧  𝐽  ∈  SConn )  ∧  𝑓  ∈  ( II  Cn  𝐽 ) )  ∧  ( ( 𝑓 ‘ 0 )  =  𝑌  ∧  ( 𝑓 ‘ 1 )  =  𝑌 ) )  →  𝐽  ∈  SConn ) | 
						
							| 16 |  | simplr | ⊢ ( ( ( ( 𝑌  ∈  𝑋  ∧  𝐽  ∈  SConn )  ∧  𝑓  ∈  ( II  Cn  𝐽 ) )  ∧  ( ( 𝑓 ‘ 0 )  =  𝑌  ∧  ( 𝑓 ‘ 1 )  =  𝑌 ) )  →  𝑓  ∈  ( II  Cn  𝐽 ) ) | 
						
							| 17 |  | simprl | ⊢ ( ( ( ( 𝑌  ∈  𝑋  ∧  𝐽  ∈  SConn )  ∧  𝑓  ∈  ( II  Cn  𝐽 ) )  ∧  ( ( 𝑓 ‘ 0 )  =  𝑌  ∧  ( 𝑓 ‘ 1 )  =  𝑌 ) )  →  ( 𝑓 ‘ 0 )  =  𝑌 ) | 
						
							| 18 |  | simprr | ⊢ ( ( ( ( 𝑌  ∈  𝑋  ∧  𝐽  ∈  SConn )  ∧  𝑓  ∈  ( II  Cn  𝐽 ) )  ∧  ( ( 𝑓 ‘ 0 )  =  𝑌  ∧  ( 𝑓 ‘ 1 )  =  𝑌 ) )  →  ( 𝑓 ‘ 1 )  =  𝑌 ) | 
						
							| 19 | 17 18 | eqtr4d | ⊢ ( ( ( ( 𝑌  ∈  𝑋  ∧  𝐽  ∈  SConn )  ∧  𝑓  ∈  ( II  Cn  𝐽 ) )  ∧  ( ( 𝑓 ‘ 0 )  =  𝑌  ∧  ( 𝑓 ‘ 1 )  =  𝑌 ) )  →  ( 𝑓 ‘ 0 )  =  ( 𝑓 ‘ 1 ) ) | 
						
							| 20 |  | sconnpht | ⊢ ( ( 𝐽  ∈  SConn  ∧  𝑓  ∈  ( II  Cn  𝐽 )  ∧  ( 𝑓 ‘ 0 )  =  ( 𝑓 ‘ 1 ) )  →  𝑓 (  ≃ph ‘ 𝐽 ) ( ( 0 [,] 1 )  ×  { ( 𝑓 ‘ 0 ) } ) ) | 
						
							| 21 | 15 16 19 20 | syl3anc | ⊢ ( ( ( ( 𝑌  ∈  𝑋  ∧  𝐽  ∈  SConn )  ∧  𝑓  ∈  ( II  Cn  𝐽 ) )  ∧  ( ( 𝑓 ‘ 0 )  =  𝑌  ∧  ( 𝑓 ‘ 1 )  =  𝑌 ) )  →  𝑓 (  ≃ph ‘ 𝐽 ) ( ( 0 [,] 1 )  ×  { ( 𝑓 ‘ 0 ) } ) ) | 
						
							| 22 | 17 | sneqd | ⊢ ( ( ( ( 𝑌  ∈  𝑋  ∧  𝐽  ∈  SConn )  ∧  𝑓  ∈  ( II  Cn  𝐽 ) )  ∧  ( ( 𝑓 ‘ 0 )  =  𝑌  ∧  ( 𝑓 ‘ 1 )  =  𝑌 ) )  →  { ( 𝑓 ‘ 0 ) }  =  { 𝑌 } ) | 
						
							| 23 | 22 | xpeq2d | ⊢ ( ( ( ( 𝑌  ∈  𝑋  ∧  𝐽  ∈  SConn )  ∧  𝑓  ∈  ( II  Cn  𝐽 ) )  ∧  ( ( 𝑓 ‘ 0 )  =  𝑌  ∧  ( 𝑓 ‘ 1 )  =  𝑌 ) )  →  ( ( 0 [,] 1 )  ×  { ( 𝑓 ‘ 0 ) } )  =  ( ( 0 [,] 1 )  ×  { 𝑌 } ) ) | 
						
							| 24 | 21 23 | breqtrd | ⊢ ( ( ( ( 𝑌  ∈  𝑋  ∧  𝐽  ∈  SConn )  ∧  𝑓  ∈  ( II  Cn  𝐽 ) )  ∧  ( ( 𝑓 ‘ 0 )  =  𝑌  ∧  ( 𝑓 ‘ 1 )  =  𝑌 ) )  →  𝑓 (  ≃ph ‘ 𝐽 ) ( ( 0 [,] 1 )  ×  { 𝑌 } ) ) | 
						
							| 25 | 14 24 | erthi | ⊢ ( ( ( ( 𝑌  ∈  𝑋  ∧  𝐽  ∈  SConn )  ∧  𝑓  ∈  ( II  Cn  𝐽 ) )  ∧  ( ( 𝑓 ‘ 0 )  =  𝑌  ∧  ( 𝑓 ‘ 1 )  =  𝑌 ) )  →  [ 𝑓 ] (  ≃ph ‘ 𝐽 )  =  [ ( ( 0 [,] 1 )  ×  { 𝑌 } ) ] (  ≃ph ‘ 𝐽 ) ) | 
						
							| 26 | 3 8 | sylib | ⊢ ( ( 𝑌  ∈  𝑋  ∧  𝐽  ∈  SConn )  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 27 |  | eqid | ⊢ ( ( 0 [,] 1 )  ×  { 𝑌 } )  =  ( ( 0 [,] 1 )  ×  { 𝑌 } ) | 
						
							| 28 | 5 27 | pi1id | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑌  ∈  𝑋 )  →  [ ( ( 0 [,] 1 )  ×  { 𝑌 } ) ] (  ≃ph ‘ 𝐽 )  =  ( 0g ‘ ( 𝐽  π1  𝑌 ) ) ) | 
						
							| 29 | 26 4 28 | syl2anc | ⊢ ( ( 𝑌  ∈  𝑋  ∧  𝐽  ∈  SConn )  →  [ ( ( 0 [,] 1 )  ×  { 𝑌 } ) ] (  ≃ph ‘ 𝐽 )  =  ( 0g ‘ ( 𝐽  π1  𝑌 ) ) ) | 
						
							| 30 | 29 | ad2antrr | ⊢ ( ( ( ( 𝑌  ∈  𝑋  ∧  𝐽  ∈  SConn )  ∧  𝑓  ∈  ( II  Cn  𝐽 ) )  ∧  ( ( 𝑓 ‘ 0 )  =  𝑌  ∧  ( 𝑓 ‘ 1 )  =  𝑌 ) )  →  [ ( ( 0 [,] 1 )  ×  { 𝑌 } ) ] (  ≃ph ‘ 𝐽 )  =  ( 0g ‘ ( 𝐽  π1  𝑌 ) ) ) | 
						
							| 31 | 25 30 | eqtrd | ⊢ ( ( ( ( 𝑌  ∈  𝑋  ∧  𝐽  ∈  SConn )  ∧  𝑓  ∈  ( II  Cn  𝐽 ) )  ∧  ( ( 𝑓 ‘ 0 )  =  𝑌  ∧  ( 𝑓 ‘ 1 )  =  𝑌 ) )  →  [ 𝑓 ] (  ≃ph ‘ 𝐽 )  =  ( 0g ‘ ( 𝐽  π1  𝑌 ) ) ) | 
						
							| 32 |  | velsn | ⊢ ( 𝑥  ∈  { ( 0g ‘ ( 𝐽  π1  𝑌 ) ) }  ↔  𝑥  =  ( 0g ‘ ( 𝐽  π1  𝑌 ) ) ) | 
						
							| 33 |  | eqeq1 | ⊢ ( 𝑥  =  [ 𝑓 ] (  ≃ph ‘ 𝐽 )  →  ( 𝑥  =  ( 0g ‘ ( 𝐽  π1  𝑌 ) )  ↔  [ 𝑓 ] (  ≃ph ‘ 𝐽 )  =  ( 0g ‘ ( 𝐽  π1  𝑌 ) ) ) ) | 
						
							| 34 | 32 33 | bitrid | ⊢ ( 𝑥  =  [ 𝑓 ] (  ≃ph ‘ 𝐽 )  →  ( 𝑥  ∈  { ( 0g ‘ ( 𝐽  π1  𝑌 ) ) }  ↔  [ 𝑓 ] (  ≃ph ‘ 𝐽 )  =  ( 0g ‘ ( 𝐽  π1  𝑌 ) ) ) ) | 
						
							| 35 | 31 34 | syl5ibrcom | ⊢ ( ( ( ( 𝑌  ∈  𝑋  ∧  𝐽  ∈  SConn )  ∧  𝑓  ∈  ( II  Cn  𝐽 ) )  ∧  ( ( 𝑓 ‘ 0 )  =  𝑌  ∧  ( 𝑓 ‘ 1 )  =  𝑌 ) )  →  ( 𝑥  =  [ 𝑓 ] (  ≃ph ‘ 𝐽 )  →  𝑥  ∈  { ( 0g ‘ ( 𝐽  π1  𝑌 ) ) } ) ) | 
						
							| 36 | 35 | expimpd | ⊢ ( ( ( 𝑌  ∈  𝑋  ∧  𝐽  ∈  SConn )  ∧  𝑓  ∈  ( II  Cn  𝐽 ) )  →  ( ( ( ( 𝑓 ‘ 0 )  =  𝑌  ∧  ( 𝑓 ‘ 1 )  =  𝑌 )  ∧  𝑥  =  [ 𝑓 ] (  ≃ph ‘ 𝐽 ) )  →  𝑥  ∈  { ( 0g ‘ ( 𝐽  π1  𝑌 ) ) } ) ) | 
						
							| 37 | 36 | rexlimdva | ⊢ ( ( 𝑌  ∈  𝑋  ∧  𝐽  ∈  SConn )  →  ( ∃ 𝑓  ∈  ( II  Cn  𝐽 ) ( ( ( 𝑓 ‘ 0 )  =  𝑌  ∧  ( 𝑓 ‘ 1 )  =  𝑌 )  ∧  𝑥  =  [ 𝑓 ] (  ≃ph ‘ 𝐽 ) )  →  𝑥  ∈  { ( 0g ‘ ( 𝐽  π1  𝑌 ) ) } ) ) | 
						
							| 38 | 12 37 | sylbid | ⊢ ( ( 𝑌  ∈  𝑋  ∧  𝐽  ∈  SConn )  →  ( 𝑥  ∈  ( Base ‘ ( 𝐽  π1  𝑌 ) )  →  𝑥  ∈  { ( 0g ‘ ( 𝐽  π1  𝑌 ) ) } ) ) | 
						
							| 39 | 38 | ssrdv | ⊢ ( ( 𝑌  ∈  𝑋  ∧  𝐽  ∈  SConn )  →  ( Base ‘ ( 𝐽  π1  𝑌 ) )  ⊆  { ( 0g ‘ ( 𝐽  π1  𝑌 ) ) } ) | 
						
							| 40 | 5 | pi1grp | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑌  ∈  𝑋 )  →  ( 𝐽  π1  𝑌 )  ∈  Grp ) | 
						
							| 41 | 26 4 40 | syl2anc | ⊢ ( ( 𝑌  ∈  𝑋  ∧  𝐽  ∈  SConn )  →  ( 𝐽  π1  𝑌 )  ∈  Grp ) | 
						
							| 42 |  | eqid | ⊢ ( 0g ‘ ( 𝐽  π1  𝑌 ) )  =  ( 0g ‘ ( 𝐽  π1  𝑌 ) ) | 
						
							| 43 | 6 42 | grpidcl | ⊢ ( ( 𝐽  π1  𝑌 )  ∈  Grp  →  ( 0g ‘ ( 𝐽  π1  𝑌 ) )  ∈  ( Base ‘ ( 𝐽  π1  𝑌 ) ) ) | 
						
							| 44 | 41 43 | syl | ⊢ ( ( 𝑌  ∈  𝑋  ∧  𝐽  ∈  SConn )  →  ( 0g ‘ ( 𝐽  π1  𝑌 ) )  ∈  ( Base ‘ ( 𝐽  π1  𝑌 ) ) ) | 
						
							| 45 | 44 | snssd | ⊢ ( ( 𝑌  ∈  𝑋  ∧  𝐽  ∈  SConn )  →  { ( 0g ‘ ( 𝐽  π1  𝑌 ) ) }  ⊆  ( Base ‘ ( 𝐽  π1  𝑌 ) ) ) | 
						
							| 46 | 39 45 | eqssd | ⊢ ( ( 𝑌  ∈  𝑋  ∧  𝐽  ∈  SConn )  →  ( Base ‘ ( 𝐽  π1  𝑌 ) )  =  { ( 0g ‘ ( 𝐽  π1  𝑌 ) ) } ) | 
						
							| 47 |  | fvex | ⊢ ( 0g ‘ ( 𝐽  π1  𝑌 ) )  ∈  V | 
						
							| 48 | 47 | ensn1 | ⊢ { ( 0g ‘ ( 𝐽  π1  𝑌 ) ) }  ≈  1o | 
						
							| 49 | 46 48 | eqbrtrdi | ⊢ ( ( 𝑌  ∈  𝑋  ∧  𝐽  ∈  SConn )  →  ( Base ‘ ( 𝐽  π1  𝑌 ) )  ≈  1o ) | 
						
							| 50 | 49 | adantll | ⊢ ( ( ( 𝐽  ∈  PConn  ∧  𝑌  ∈  𝑋 )  ∧  𝐽  ∈  SConn )  →  ( Base ‘ ( 𝐽  π1  𝑌 ) )  ≈  1o ) | 
						
							| 51 |  | simpll | ⊢ ( ( ( 𝐽  ∈  PConn  ∧  𝑌  ∈  𝑋 )  ∧  ( Base ‘ ( 𝐽  π1  𝑌 ) )  ≈  1o )  →  𝐽  ∈  PConn ) | 
						
							| 52 |  | eqid | ⊢ ( 𝐽  π1  ( 𝑓 ‘ 0 ) )  =  ( 𝐽  π1  ( 𝑓 ‘ 0 ) ) | 
						
							| 53 |  | eqid | ⊢ ( Base ‘ ( 𝐽  π1  ( 𝑓 ‘ 0 ) ) )  =  ( Base ‘ ( 𝐽  π1  ( 𝑓 ‘ 0 ) ) ) | 
						
							| 54 |  | simplll | ⊢ ( ( ( ( 𝐽  ∈  PConn  ∧  𝑌  ∈  𝑋 )  ∧  ( Base ‘ ( 𝐽  π1  𝑌 ) )  ≈  1o )  ∧  ( 𝑓  ∈  ( II  Cn  𝐽 )  ∧  ( 𝑓 ‘ 0 )  =  ( 𝑓 ‘ 1 ) ) )  →  𝐽  ∈  PConn ) | 
						
							| 55 |  | pconntop | ⊢ ( 𝐽  ∈  PConn  →  𝐽  ∈  Top ) | 
						
							| 56 | 54 55 | syl | ⊢ ( ( ( ( 𝐽  ∈  PConn  ∧  𝑌  ∈  𝑋 )  ∧  ( Base ‘ ( 𝐽  π1  𝑌 ) )  ≈  1o )  ∧  ( 𝑓  ∈  ( II  Cn  𝐽 )  ∧  ( 𝑓 ‘ 0 )  =  ( 𝑓 ‘ 1 ) ) )  →  𝐽  ∈  Top ) | 
						
							| 57 | 56 8 | sylib | ⊢ ( ( ( ( 𝐽  ∈  PConn  ∧  𝑌  ∈  𝑋 )  ∧  ( Base ‘ ( 𝐽  π1  𝑌 ) )  ≈  1o )  ∧  ( 𝑓  ∈  ( II  Cn  𝐽 )  ∧  ( 𝑓 ‘ 0 )  =  ( 𝑓 ‘ 1 ) ) )  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 58 |  | simprl | ⊢ ( ( ( ( 𝐽  ∈  PConn  ∧  𝑌  ∈  𝑋 )  ∧  ( Base ‘ ( 𝐽  π1  𝑌 ) )  ≈  1o )  ∧  ( 𝑓  ∈  ( II  Cn  𝐽 )  ∧  ( 𝑓 ‘ 0 )  =  ( 𝑓 ‘ 1 ) ) )  →  𝑓  ∈  ( II  Cn  𝐽 ) ) | 
						
							| 59 |  | iiuni | ⊢ ( 0 [,] 1 )  =  ∪  II | 
						
							| 60 | 59 1 | cnf | ⊢ ( 𝑓  ∈  ( II  Cn  𝐽 )  →  𝑓 : ( 0 [,] 1 ) ⟶ 𝑋 ) | 
						
							| 61 | 58 60 | syl | ⊢ ( ( ( ( 𝐽  ∈  PConn  ∧  𝑌  ∈  𝑋 )  ∧  ( Base ‘ ( 𝐽  π1  𝑌 ) )  ≈  1o )  ∧  ( 𝑓  ∈  ( II  Cn  𝐽 )  ∧  ( 𝑓 ‘ 0 )  =  ( 𝑓 ‘ 1 ) ) )  →  𝑓 : ( 0 [,] 1 ) ⟶ 𝑋 ) | 
						
							| 62 |  | 0elunit | ⊢ 0  ∈  ( 0 [,] 1 ) | 
						
							| 63 |  | ffvelcdm | ⊢ ( ( 𝑓 : ( 0 [,] 1 ) ⟶ 𝑋  ∧  0  ∈  ( 0 [,] 1 ) )  →  ( 𝑓 ‘ 0 )  ∈  𝑋 ) | 
						
							| 64 | 61 62 63 | sylancl | ⊢ ( ( ( ( 𝐽  ∈  PConn  ∧  𝑌  ∈  𝑋 )  ∧  ( Base ‘ ( 𝐽  π1  𝑌 ) )  ≈  1o )  ∧  ( 𝑓  ∈  ( II  Cn  𝐽 )  ∧  ( 𝑓 ‘ 0 )  =  ( 𝑓 ‘ 1 ) ) )  →  ( 𝑓 ‘ 0 )  ∈  𝑋 ) | 
						
							| 65 |  | eqidd | ⊢ ( ( ( ( 𝐽  ∈  PConn  ∧  𝑌  ∈  𝑋 )  ∧  ( Base ‘ ( 𝐽  π1  𝑌 ) )  ≈  1o )  ∧  ( 𝑓  ∈  ( II  Cn  𝐽 )  ∧  ( 𝑓 ‘ 0 )  =  ( 𝑓 ‘ 1 ) ) )  →  ( 𝑓 ‘ 0 )  =  ( 𝑓 ‘ 0 ) ) | 
						
							| 66 |  | simprr | ⊢ ( ( ( ( 𝐽  ∈  PConn  ∧  𝑌  ∈  𝑋 )  ∧  ( Base ‘ ( 𝐽  π1  𝑌 ) )  ≈  1o )  ∧  ( 𝑓  ∈  ( II  Cn  𝐽 )  ∧  ( 𝑓 ‘ 0 )  =  ( 𝑓 ‘ 1 ) ) )  →  ( 𝑓 ‘ 0 )  =  ( 𝑓 ‘ 1 ) ) | 
						
							| 67 | 66 | eqcomd | ⊢ ( ( ( ( 𝐽  ∈  PConn  ∧  𝑌  ∈  𝑋 )  ∧  ( Base ‘ ( 𝐽  π1  𝑌 ) )  ≈  1o )  ∧  ( 𝑓  ∈  ( II  Cn  𝐽 )  ∧  ( 𝑓 ‘ 0 )  =  ( 𝑓 ‘ 1 ) ) )  →  ( 𝑓 ‘ 1 )  =  ( 𝑓 ‘ 0 ) ) | 
						
							| 68 | 52 53 57 64 58 65 67 | elpi1i | ⊢ ( ( ( ( 𝐽  ∈  PConn  ∧  𝑌  ∈  𝑋 )  ∧  ( Base ‘ ( 𝐽  π1  𝑌 ) )  ≈  1o )  ∧  ( 𝑓  ∈  ( II  Cn  𝐽 )  ∧  ( 𝑓 ‘ 0 )  =  ( 𝑓 ‘ 1 ) ) )  →  [ 𝑓 ] (  ≃ph ‘ 𝐽 )  ∈  ( Base ‘ ( 𝐽  π1  ( 𝑓 ‘ 0 ) ) ) ) | 
						
							| 69 |  | eqid | ⊢ ( ( 0 [,] 1 )  ×  { ( 𝑓 ‘ 0 ) } )  =  ( ( 0 [,] 1 )  ×  { ( 𝑓 ‘ 0 ) } ) | 
						
							| 70 | 69 | pcoptcl | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  ( 𝑓 ‘ 0 )  ∈  𝑋 )  →  ( ( ( 0 [,] 1 )  ×  { ( 𝑓 ‘ 0 ) } )  ∈  ( II  Cn  𝐽 )  ∧  ( ( ( 0 [,] 1 )  ×  { ( 𝑓 ‘ 0 ) } ) ‘ 0 )  =  ( 𝑓 ‘ 0 )  ∧  ( ( ( 0 [,] 1 )  ×  { ( 𝑓 ‘ 0 ) } ) ‘ 1 )  =  ( 𝑓 ‘ 0 ) ) ) | 
						
							| 71 | 57 64 70 | syl2anc | ⊢ ( ( ( ( 𝐽  ∈  PConn  ∧  𝑌  ∈  𝑋 )  ∧  ( Base ‘ ( 𝐽  π1  𝑌 ) )  ≈  1o )  ∧  ( 𝑓  ∈  ( II  Cn  𝐽 )  ∧  ( 𝑓 ‘ 0 )  =  ( 𝑓 ‘ 1 ) ) )  →  ( ( ( 0 [,] 1 )  ×  { ( 𝑓 ‘ 0 ) } )  ∈  ( II  Cn  𝐽 )  ∧  ( ( ( 0 [,] 1 )  ×  { ( 𝑓 ‘ 0 ) } ) ‘ 0 )  =  ( 𝑓 ‘ 0 )  ∧  ( ( ( 0 [,] 1 )  ×  { ( 𝑓 ‘ 0 ) } ) ‘ 1 )  =  ( 𝑓 ‘ 0 ) ) ) | 
						
							| 72 | 71 | simp1d | ⊢ ( ( ( ( 𝐽  ∈  PConn  ∧  𝑌  ∈  𝑋 )  ∧  ( Base ‘ ( 𝐽  π1  𝑌 ) )  ≈  1o )  ∧  ( 𝑓  ∈  ( II  Cn  𝐽 )  ∧  ( 𝑓 ‘ 0 )  =  ( 𝑓 ‘ 1 ) ) )  →  ( ( 0 [,] 1 )  ×  { ( 𝑓 ‘ 0 ) } )  ∈  ( II  Cn  𝐽 ) ) | 
						
							| 73 | 71 | simp2d | ⊢ ( ( ( ( 𝐽  ∈  PConn  ∧  𝑌  ∈  𝑋 )  ∧  ( Base ‘ ( 𝐽  π1  𝑌 ) )  ≈  1o )  ∧  ( 𝑓  ∈  ( II  Cn  𝐽 )  ∧  ( 𝑓 ‘ 0 )  =  ( 𝑓 ‘ 1 ) ) )  →  ( ( ( 0 [,] 1 )  ×  { ( 𝑓 ‘ 0 ) } ) ‘ 0 )  =  ( 𝑓 ‘ 0 ) ) | 
						
							| 74 | 71 | simp3d | ⊢ ( ( ( ( 𝐽  ∈  PConn  ∧  𝑌  ∈  𝑋 )  ∧  ( Base ‘ ( 𝐽  π1  𝑌 ) )  ≈  1o )  ∧  ( 𝑓  ∈  ( II  Cn  𝐽 )  ∧  ( 𝑓 ‘ 0 )  =  ( 𝑓 ‘ 1 ) ) )  →  ( ( ( 0 [,] 1 )  ×  { ( 𝑓 ‘ 0 ) } ) ‘ 1 )  =  ( 𝑓 ‘ 0 ) ) | 
						
							| 75 | 52 53 57 64 72 73 74 | elpi1i | ⊢ ( ( ( ( 𝐽  ∈  PConn  ∧  𝑌  ∈  𝑋 )  ∧  ( Base ‘ ( 𝐽  π1  𝑌 ) )  ≈  1o )  ∧  ( 𝑓  ∈  ( II  Cn  𝐽 )  ∧  ( 𝑓 ‘ 0 )  =  ( 𝑓 ‘ 1 ) ) )  →  [ ( ( 0 [,] 1 )  ×  { ( 𝑓 ‘ 0 ) } ) ] (  ≃ph ‘ 𝐽 )  ∈  ( Base ‘ ( 𝐽  π1  ( 𝑓 ‘ 0 ) ) ) ) | 
						
							| 76 |  | simpllr | ⊢ ( ( ( ( 𝐽  ∈  PConn  ∧  𝑌  ∈  𝑋 )  ∧  ( Base ‘ ( 𝐽  π1  𝑌 ) )  ≈  1o )  ∧  ( 𝑓  ∈  ( II  Cn  𝐽 )  ∧  ( 𝑓 ‘ 0 )  =  ( 𝑓 ‘ 1 ) ) )  →  𝑌  ∈  𝑋 ) | 
						
							| 77 | 1 52 5 53 6 | pconnpi1 | ⊢ ( ( 𝐽  ∈  PConn  ∧  ( 𝑓 ‘ 0 )  ∈  𝑋  ∧  𝑌  ∈  𝑋 )  →  ( 𝐽  π1  ( 𝑓 ‘ 0 ) )  ≃𝑔  ( 𝐽  π1  𝑌 ) ) | 
						
							| 78 | 54 64 76 77 | syl3anc | ⊢ ( ( ( ( 𝐽  ∈  PConn  ∧  𝑌  ∈  𝑋 )  ∧  ( Base ‘ ( 𝐽  π1  𝑌 ) )  ≈  1o )  ∧  ( 𝑓  ∈  ( II  Cn  𝐽 )  ∧  ( 𝑓 ‘ 0 )  =  ( 𝑓 ‘ 1 ) ) )  →  ( 𝐽  π1  ( 𝑓 ‘ 0 ) )  ≃𝑔  ( 𝐽  π1  𝑌 ) ) | 
						
							| 79 | 53 6 | gicen | ⊢ ( ( 𝐽  π1  ( 𝑓 ‘ 0 ) )  ≃𝑔  ( 𝐽  π1  𝑌 )  →  ( Base ‘ ( 𝐽  π1  ( 𝑓 ‘ 0 ) ) )  ≈  ( Base ‘ ( 𝐽  π1  𝑌 ) ) ) | 
						
							| 80 | 78 79 | syl | ⊢ ( ( ( ( 𝐽  ∈  PConn  ∧  𝑌  ∈  𝑋 )  ∧  ( Base ‘ ( 𝐽  π1  𝑌 ) )  ≈  1o )  ∧  ( 𝑓  ∈  ( II  Cn  𝐽 )  ∧  ( 𝑓 ‘ 0 )  =  ( 𝑓 ‘ 1 ) ) )  →  ( Base ‘ ( 𝐽  π1  ( 𝑓 ‘ 0 ) ) )  ≈  ( Base ‘ ( 𝐽  π1  𝑌 ) ) ) | 
						
							| 81 |  | simplr | ⊢ ( ( ( ( 𝐽  ∈  PConn  ∧  𝑌  ∈  𝑋 )  ∧  ( Base ‘ ( 𝐽  π1  𝑌 ) )  ≈  1o )  ∧  ( 𝑓  ∈  ( II  Cn  𝐽 )  ∧  ( 𝑓 ‘ 0 )  =  ( 𝑓 ‘ 1 ) ) )  →  ( Base ‘ ( 𝐽  π1  𝑌 ) )  ≈  1o ) | 
						
							| 82 |  | entr | ⊢ ( ( ( Base ‘ ( 𝐽  π1  ( 𝑓 ‘ 0 ) ) )  ≈  ( Base ‘ ( 𝐽  π1  𝑌 ) )  ∧  ( Base ‘ ( 𝐽  π1  𝑌 ) )  ≈  1o )  →  ( Base ‘ ( 𝐽  π1  ( 𝑓 ‘ 0 ) ) )  ≈  1o ) | 
						
							| 83 | 80 81 82 | syl2anc | ⊢ ( ( ( ( 𝐽  ∈  PConn  ∧  𝑌  ∈  𝑋 )  ∧  ( Base ‘ ( 𝐽  π1  𝑌 ) )  ≈  1o )  ∧  ( 𝑓  ∈  ( II  Cn  𝐽 )  ∧  ( 𝑓 ‘ 0 )  =  ( 𝑓 ‘ 1 ) ) )  →  ( Base ‘ ( 𝐽  π1  ( 𝑓 ‘ 0 ) ) )  ≈  1o ) | 
						
							| 84 |  | en1eqsn | ⊢ ( ( [ ( ( 0 [,] 1 )  ×  { ( 𝑓 ‘ 0 ) } ) ] (  ≃ph ‘ 𝐽 )  ∈  ( Base ‘ ( 𝐽  π1  ( 𝑓 ‘ 0 ) ) )  ∧  ( Base ‘ ( 𝐽  π1  ( 𝑓 ‘ 0 ) ) )  ≈  1o )  →  ( Base ‘ ( 𝐽  π1  ( 𝑓 ‘ 0 ) ) )  =  { [ ( ( 0 [,] 1 )  ×  { ( 𝑓 ‘ 0 ) } ) ] (  ≃ph ‘ 𝐽 ) } ) | 
						
							| 85 | 75 83 84 | syl2anc | ⊢ ( ( ( ( 𝐽  ∈  PConn  ∧  𝑌  ∈  𝑋 )  ∧  ( Base ‘ ( 𝐽  π1  𝑌 ) )  ≈  1o )  ∧  ( 𝑓  ∈  ( II  Cn  𝐽 )  ∧  ( 𝑓 ‘ 0 )  =  ( 𝑓 ‘ 1 ) ) )  →  ( Base ‘ ( 𝐽  π1  ( 𝑓 ‘ 0 ) ) )  =  { [ ( ( 0 [,] 1 )  ×  { ( 𝑓 ‘ 0 ) } ) ] (  ≃ph ‘ 𝐽 ) } ) | 
						
							| 86 | 68 85 | eleqtrd | ⊢ ( ( ( ( 𝐽  ∈  PConn  ∧  𝑌  ∈  𝑋 )  ∧  ( Base ‘ ( 𝐽  π1  𝑌 ) )  ≈  1o )  ∧  ( 𝑓  ∈  ( II  Cn  𝐽 )  ∧  ( 𝑓 ‘ 0 )  =  ( 𝑓 ‘ 1 ) ) )  →  [ 𝑓 ] (  ≃ph ‘ 𝐽 )  ∈  { [ ( ( 0 [,] 1 )  ×  { ( 𝑓 ‘ 0 ) } ) ] (  ≃ph ‘ 𝐽 ) } ) | 
						
							| 87 |  | elsni | ⊢ ( [ 𝑓 ] (  ≃ph ‘ 𝐽 )  ∈  { [ ( ( 0 [,] 1 )  ×  { ( 𝑓 ‘ 0 ) } ) ] (  ≃ph ‘ 𝐽 ) }  →  [ 𝑓 ] (  ≃ph ‘ 𝐽 )  =  [ ( ( 0 [,] 1 )  ×  { ( 𝑓 ‘ 0 ) } ) ] (  ≃ph ‘ 𝐽 ) ) | 
						
							| 88 | 86 87 | syl | ⊢ ( ( ( ( 𝐽  ∈  PConn  ∧  𝑌  ∈  𝑋 )  ∧  ( Base ‘ ( 𝐽  π1  𝑌 ) )  ≈  1o )  ∧  ( 𝑓  ∈  ( II  Cn  𝐽 )  ∧  ( 𝑓 ‘ 0 )  =  ( 𝑓 ‘ 1 ) ) )  →  [ 𝑓 ] (  ≃ph ‘ 𝐽 )  =  [ ( ( 0 [,] 1 )  ×  { ( 𝑓 ‘ 0 ) } ) ] (  ≃ph ‘ 𝐽 ) ) | 
						
							| 89 | 13 | a1i | ⊢ ( ( ( ( 𝐽  ∈  PConn  ∧  𝑌  ∈  𝑋 )  ∧  ( Base ‘ ( 𝐽  π1  𝑌 ) )  ≈  1o )  ∧  ( 𝑓  ∈  ( II  Cn  𝐽 )  ∧  ( 𝑓 ‘ 0 )  =  ( 𝑓 ‘ 1 ) ) )  →  (  ≃ph ‘ 𝐽 )  Er  ( II  Cn  𝐽 ) ) | 
						
							| 90 | 89 58 | erth | ⊢ ( ( ( ( 𝐽  ∈  PConn  ∧  𝑌  ∈  𝑋 )  ∧  ( Base ‘ ( 𝐽  π1  𝑌 ) )  ≈  1o )  ∧  ( 𝑓  ∈  ( II  Cn  𝐽 )  ∧  ( 𝑓 ‘ 0 )  =  ( 𝑓 ‘ 1 ) ) )  →  ( 𝑓 (  ≃ph ‘ 𝐽 ) ( ( 0 [,] 1 )  ×  { ( 𝑓 ‘ 0 ) } )  ↔  [ 𝑓 ] (  ≃ph ‘ 𝐽 )  =  [ ( ( 0 [,] 1 )  ×  { ( 𝑓 ‘ 0 ) } ) ] (  ≃ph ‘ 𝐽 ) ) ) | 
						
							| 91 | 88 90 | mpbird | ⊢ ( ( ( ( 𝐽  ∈  PConn  ∧  𝑌  ∈  𝑋 )  ∧  ( Base ‘ ( 𝐽  π1  𝑌 ) )  ≈  1o )  ∧  ( 𝑓  ∈  ( II  Cn  𝐽 )  ∧  ( 𝑓 ‘ 0 )  =  ( 𝑓 ‘ 1 ) ) )  →  𝑓 (  ≃ph ‘ 𝐽 ) ( ( 0 [,] 1 )  ×  { ( 𝑓 ‘ 0 ) } ) ) | 
						
							| 92 | 91 | expr | ⊢ ( ( ( ( 𝐽  ∈  PConn  ∧  𝑌  ∈  𝑋 )  ∧  ( Base ‘ ( 𝐽  π1  𝑌 ) )  ≈  1o )  ∧  𝑓  ∈  ( II  Cn  𝐽 ) )  →  ( ( 𝑓 ‘ 0 )  =  ( 𝑓 ‘ 1 )  →  𝑓 (  ≃ph ‘ 𝐽 ) ( ( 0 [,] 1 )  ×  { ( 𝑓 ‘ 0 ) } ) ) ) | 
						
							| 93 | 92 | ralrimiva | ⊢ ( ( ( 𝐽  ∈  PConn  ∧  𝑌  ∈  𝑋 )  ∧  ( Base ‘ ( 𝐽  π1  𝑌 ) )  ≈  1o )  →  ∀ 𝑓  ∈  ( II  Cn  𝐽 ) ( ( 𝑓 ‘ 0 )  =  ( 𝑓 ‘ 1 )  →  𝑓 (  ≃ph ‘ 𝐽 ) ( ( 0 [,] 1 )  ×  { ( 𝑓 ‘ 0 ) } ) ) ) | 
						
							| 94 |  | issconn | ⊢ ( 𝐽  ∈  SConn  ↔  ( 𝐽  ∈  PConn  ∧  ∀ 𝑓  ∈  ( II  Cn  𝐽 ) ( ( 𝑓 ‘ 0 )  =  ( 𝑓 ‘ 1 )  →  𝑓 (  ≃ph ‘ 𝐽 ) ( ( 0 [,] 1 )  ×  { ( 𝑓 ‘ 0 ) } ) ) ) ) | 
						
							| 95 | 51 93 94 | sylanbrc | ⊢ ( ( ( 𝐽  ∈  PConn  ∧  𝑌  ∈  𝑋 )  ∧  ( Base ‘ ( 𝐽  π1  𝑌 ) )  ≈  1o )  →  𝐽  ∈  SConn ) | 
						
							| 96 | 50 95 | impbida | ⊢ ( ( 𝐽  ∈  PConn  ∧  𝑌  ∈  𝑋 )  →  ( 𝐽  ∈  SConn  ↔  ( Base ‘ ( 𝐽  π1  𝑌 ) )  ≈  1o ) ) |