| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pconnpi1.x | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 2 |  | pconnpi1.p | ⊢ 𝑃  =  ( 𝐽  π1  𝐴 ) | 
						
							| 3 |  | pconnpi1.q | ⊢ 𝑄  =  ( 𝐽  π1  𝐵 ) | 
						
							| 4 |  | pconnpi1.s | ⊢ 𝑆  =  ( Base ‘ 𝑃 ) | 
						
							| 5 |  | pconnpi1.t | ⊢ 𝑇  =  ( Base ‘ 𝑄 ) | 
						
							| 6 | 1 | pconncn | ⊢ ( ( 𝐽  ∈  PConn  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ∃ 𝑓  ∈  ( II  Cn  𝐽 ) ( ( 𝑓 ‘ 0 )  =  𝐴  ∧  ( 𝑓 ‘ 1 )  =  𝐵 ) ) | 
						
							| 7 |  | eqid | ⊢ ( 𝐽  π1  ( 𝑓 ‘ 0 ) )  =  ( 𝐽  π1  ( 𝑓 ‘ 0 ) ) | 
						
							| 8 |  | eqid | ⊢ ( 𝐽  π1  ( 𝑓 ‘ 1 ) )  =  ( 𝐽  π1  ( 𝑓 ‘ 1 ) ) | 
						
							| 9 |  | eqid | ⊢ ( Base ‘ ( 𝐽  π1  ( 𝑓 ‘ 0 ) ) )  =  ( Base ‘ ( 𝐽  π1  ( 𝑓 ‘ 0 ) ) ) | 
						
							| 10 |  | eqid | ⊢ ran  ( ℎ  ∈  ∪  ( Base ‘ ( 𝐽  π1  ( 𝑓 ‘ 0 ) ) )  ↦  〈 [ ℎ ] (  ≃ph ‘ 𝐽 ) ,  [ ( ( 𝑥  ∈  ( 0 [,] 1 )  ↦  ( 𝑓 ‘ ( 1  −  𝑥 ) ) ) ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝑓 ) ) ] (  ≃ph ‘ 𝐽 ) 〉 )  =  ran  ( ℎ  ∈  ∪  ( Base ‘ ( 𝐽  π1  ( 𝑓 ‘ 0 ) ) )  ↦  〈 [ ℎ ] (  ≃ph ‘ 𝐽 ) ,  [ ( ( 𝑥  ∈  ( 0 [,] 1 )  ↦  ( 𝑓 ‘ ( 1  −  𝑥 ) ) ) ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝑓 ) ) ] (  ≃ph ‘ 𝐽 ) 〉 ) | 
						
							| 11 |  | simpl1 | ⊢ ( ( ( 𝐽  ∈  PConn  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( 𝑓  ∈  ( II  Cn  𝐽 )  ∧  ( ( 𝑓 ‘ 0 )  =  𝐴  ∧  ( 𝑓 ‘ 1 )  =  𝐵 ) ) )  →  𝐽  ∈  PConn ) | 
						
							| 12 |  | pconntop | ⊢ ( 𝐽  ∈  PConn  →  𝐽  ∈  Top ) | 
						
							| 13 | 11 12 | syl | ⊢ ( ( ( 𝐽  ∈  PConn  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( 𝑓  ∈  ( II  Cn  𝐽 )  ∧  ( ( 𝑓 ‘ 0 )  =  𝐴  ∧  ( 𝑓 ‘ 1 )  =  𝐵 ) ) )  →  𝐽  ∈  Top ) | 
						
							| 14 | 1 | toptopon | ⊢ ( 𝐽  ∈  Top  ↔  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 15 | 13 14 | sylib | ⊢ ( ( ( 𝐽  ∈  PConn  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( 𝑓  ∈  ( II  Cn  𝐽 )  ∧  ( ( 𝑓 ‘ 0 )  =  𝐴  ∧  ( 𝑓 ‘ 1 )  =  𝐵 ) ) )  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 16 |  | simprl | ⊢ ( ( ( 𝐽  ∈  PConn  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( 𝑓  ∈  ( II  Cn  𝐽 )  ∧  ( ( 𝑓 ‘ 0 )  =  𝐴  ∧  ( 𝑓 ‘ 1 )  =  𝐵 ) ) )  →  𝑓  ∈  ( II  Cn  𝐽 ) ) | 
						
							| 17 |  | oveq2 | ⊢ ( 𝑥  =  𝑦  →  ( 1  −  𝑥 )  =  ( 1  −  𝑦 ) ) | 
						
							| 18 | 17 | fveq2d | ⊢ ( 𝑥  =  𝑦  →  ( 𝑓 ‘ ( 1  −  𝑥 ) )  =  ( 𝑓 ‘ ( 1  −  𝑦 ) ) ) | 
						
							| 19 | 18 | cbvmptv | ⊢ ( 𝑥  ∈  ( 0 [,] 1 )  ↦  ( 𝑓 ‘ ( 1  −  𝑥 ) ) )  =  ( 𝑦  ∈  ( 0 [,] 1 )  ↦  ( 𝑓 ‘ ( 1  −  𝑦 ) ) ) | 
						
							| 20 | 7 8 9 10 15 16 19 | pi1xfrgim | ⊢ ( ( ( 𝐽  ∈  PConn  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( 𝑓  ∈  ( II  Cn  𝐽 )  ∧  ( ( 𝑓 ‘ 0 )  =  𝐴  ∧  ( 𝑓 ‘ 1 )  =  𝐵 ) ) )  →  ran  ( ℎ  ∈  ∪  ( Base ‘ ( 𝐽  π1  ( 𝑓 ‘ 0 ) ) )  ↦  〈 [ ℎ ] (  ≃ph ‘ 𝐽 ) ,  [ ( ( 𝑥  ∈  ( 0 [,] 1 )  ↦  ( 𝑓 ‘ ( 1  −  𝑥 ) ) ) ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝑓 ) ) ] (  ≃ph ‘ 𝐽 ) 〉 )  ∈  ( ( 𝐽  π1  ( 𝑓 ‘ 0 ) )  GrpIso  ( 𝐽  π1  ( 𝑓 ‘ 1 ) ) ) ) | 
						
							| 21 |  | simprrl | ⊢ ( ( ( 𝐽  ∈  PConn  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( 𝑓  ∈  ( II  Cn  𝐽 )  ∧  ( ( 𝑓 ‘ 0 )  =  𝐴  ∧  ( 𝑓 ‘ 1 )  =  𝐵 ) ) )  →  ( 𝑓 ‘ 0 )  =  𝐴 ) | 
						
							| 22 | 21 | oveq2d | ⊢ ( ( ( 𝐽  ∈  PConn  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( 𝑓  ∈  ( II  Cn  𝐽 )  ∧  ( ( 𝑓 ‘ 0 )  =  𝐴  ∧  ( 𝑓 ‘ 1 )  =  𝐵 ) ) )  →  ( 𝐽  π1  ( 𝑓 ‘ 0 ) )  =  ( 𝐽  π1  𝐴 ) ) | 
						
							| 23 | 22 2 | eqtr4di | ⊢ ( ( ( 𝐽  ∈  PConn  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( 𝑓  ∈  ( II  Cn  𝐽 )  ∧  ( ( 𝑓 ‘ 0 )  =  𝐴  ∧  ( 𝑓 ‘ 1 )  =  𝐵 ) ) )  →  ( 𝐽  π1  ( 𝑓 ‘ 0 ) )  =  𝑃 ) | 
						
							| 24 |  | simprrr | ⊢ ( ( ( 𝐽  ∈  PConn  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( 𝑓  ∈  ( II  Cn  𝐽 )  ∧  ( ( 𝑓 ‘ 0 )  =  𝐴  ∧  ( 𝑓 ‘ 1 )  =  𝐵 ) ) )  →  ( 𝑓 ‘ 1 )  =  𝐵 ) | 
						
							| 25 | 24 | oveq2d | ⊢ ( ( ( 𝐽  ∈  PConn  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( 𝑓  ∈  ( II  Cn  𝐽 )  ∧  ( ( 𝑓 ‘ 0 )  =  𝐴  ∧  ( 𝑓 ‘ 1 )  =  𝐵 ) ) )  →  ( 𝐽  π1  ( 𝑓 ‘ 1 ) )  =  ( 𝐽  π1  𝐵 ) ) | 
						
							| 26 | 25 3 | eqtr4di | ⊢ ( ( ( 𝐽  ∈  PConn  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( 𝑓  ∈  ( II  Cn  𝐽 )  ∧  ( ( 𝑓 ‘ 0 )  =  𝐴  ∧  ( 𝑓 ‘ 1 )  =  𝐵 ) ) )  →  ( 𝐽  π1  ( 𝑓 ‘ 1 ) )  =  𝑄 ) | 
						
							| 27 | 23 26 | oveq12d | ⊢ ( ( ( 𝐽  ∈  PConn  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( 𝑓  ∈  ( II  Cn  𝐽 )  ∧  ( ( 𝑓 ‘ 0 )  =  𝐴  ∧  ( 𝑓 ‘ 1 )  =  𝐵 ) ) )  →  ( ( 𝐽  π1  ( 𝑓 ‘ 0 ) )  GrpIso  ( 𝐽  π1  ( 𝑓 ‘ 1 ) ) )  =  ( 𝑃  GrpIso  𝑄 ) ) | 
						
							| 28 | 20 27 | eleqtrd | ⊢ ( ( ( 𝐽  ∈  PConn  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( 𝑓  ∈  ( II  Cn  𝐽 )  ∧  ( ( 𝑓 ‘ 0 )  =  𝐴  ∧  ( 𝑓 ‘ 1 )  =  𝐵 ) ) )  →  ran  ( ℎ  ∈  ∪  ( Base ‘ ( 𝐽  π1  ( 𝑓 ‘ 0 ) ) )  ↦  〈 [ ℎ ] (  ≃ph ‘ 𝐽 ) ,  [ ( ( 𝑥  ∈  ( 0 [,] 1 )  ↦  ( 𝑓 ‘ ( 1  −  𝑥 ) ) ) ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝑓 ) ) ] (  ≃ph ‘ 𝐽 ) 〉 )  ∈  ( 𝑃  GrpIso  𝑄 ) ) | 
						
							| 29 |  | brgici | ⊢ ( ran  ( ℎ  ∈  ∪  ( Base ‘ ( 𝐽  π1  ( 𝑓 ‘ 0 ) ) )  ↦  〈 [ ℎ ] (  ≃ph ‘ 𝐽 ) ,  [ ( ( 𝑥  ∈  ( 0 [,] 1 )  ↦  ( 𝑓 ‘ ( 1  −  𝑥 ) ) ) ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝑓 ) ) ] (  ≃ph ‘ 𝐽 ) 〉 )  ∈  ( 𝑃  GrpIso  𝑄 )  →  𝑃  ≃𝑔  𝑄 ) | 
						
							| 30 | 28 29 | syl | ⊢ ( ( ( 𝐽  ∈  PConn  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( 𝑓  ∈  ( II  Cn  𝐽 )  ∧  ( ( 𝑓 ‘ 0 )  =  𝐴  ∧  ( 𝑓 ‘ 1 )  =  𝐵 ) ) )  →  𝑃  ≃𝑔  𝑄 ) | 
						
							| 31 | 6 30 | rexlimddv | ⊢ ( ( 𝐽  ∈  PConn  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  𝑃  ≃𝑔  𝑄 ) |