Step |
Hyp |
Ref |
Expression |
1 |
|
pconnpi1.x |
⊢ 𝑋 = ∪ 𝐽 |
2 |
|
pconnpi1.p |
⊢ 𝑃 = ( 𝐽 π1 𝐴 ) |
3 |
|
pconnpi1.q |
⊢ 𝑄 = ( 𝐽 π1 𝐵 ) |
4 |
|
pconnpi1.s |
⊢ 𝑆 = ( Base ‘ 𝑃 ) |
5 |
|
pconnpi1.t |
⊢ 𝑇 = ( Base ‘ 𝑄 ) |
6 |
1
|
pconncn |
⊢ ( ( 𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝐴 ∧ ( 𝑓 ‘ 1 ) = 𝐵 ) ) |
7 |
|
eqid |
⊢ ( 𝐽 π1 ( 𝑓 ‘ 0 ) ) = ( 𝐽 π1 ( 𝑓 ‘ 0 ) ) |
8 |
|
eqid |
⊢ ( 𝐽 π1 ( 𝑓 ‘ 1 ) ) = ( 𝐽 π1 ( 𝑓 ‘ 1 ) ) |
9 |
|
eqid |
⊢ ( Base ‘ ( 𝐽 π1 ( 𝑓 ‘ 0 ) ) ) = ( Base ‘ ( 𝐽 π1 ( 𝑓 ‘ 0 ) ) ) |
10 |
|
eqid |
⊢ ran ( ℎ ∈ ∪ ( Base ‘ ( 𝐽 π1 ( 𝑓 ‘ 0 ) ) ) ↦ 〈 [ ℎ ] ( ≃ph ‘ 𝐽 ) , [ ( ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( 𝑓 ‘ ( 1 − 𝑥 ) ) ) ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝑓 ) ) ] ( ≃ph ‘ 𝐽 ) 〉 ) = ran ( ℎ ∈ ∪ ( Base ‘ ( 𝐽 π1 ( 𝑓 ‘ 0 ) ) ) ↦ 〈 [ ℎ ] ( ≃ph ‘ 𝐽 ) , [ ( ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( 𝑓 ‘ ( 1 − 𝑥 ) ) ) ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝑓 ) ) ] ( ≃ph ‘ 𝐽 ) 〉 ) |
11 |
|
simpl1 |
⊢ ( ( ( 𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑓 ‘ 0 ) = 𝐴 ∧ ( 𝑓 ‘ 1 ) = 𝐵 ) ) ) → 𝐽 ∈ PConn ) |
12 |
|
pconntop |
⊢ ( 𝐽 ∈ PConn → 𝐽 ∈ Top ) |
13 |
11 12
|
syl |
⊢ ( ( ( 𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑓 ‘ 0 ) = 𝐴 ∧ ( 𝑓 ‘ 1 ) = 𝐵 ) ) ) → 𝐽 ∈ Top ) |
14 |
1
|
toptopon |
⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
15 |
13 14
|
sylib |
⊢ ( ( ( 𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑓 ‘ 0 ) = 𝐴 ∧ ( 𝑓 ‘ 1 ) = 𝐵 ) ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
16 |
|
simprl |
⊢ ( ( ( 𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑓 ‘ 0 ) = 𝐴 ∧ ( 𝑓 ‘ 1 ) = 𝐵 ) ) ) → 𝑓 ∈ ( II Cn 𝐽 ) ) |
17 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 1 − 𝑥 ) = ( 1 − 𝑦 ) ) |
18 |
17
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝑓 ‘ ( 1 − 𝑥 ) ) = ( 𝑓 ‘ ( 1 − 𝑦 ) ) ) |
19 |
18
|
cbvmptv |
⊢ ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( 𝑓 ‘ ( 1 − 𝑥 ) ) ) = ( 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝑓 ‘ ( 1 − 𝑦 ) ) ) |
20 |
7 8 9 10 15 16 19
|
pi1xfrgim |
⊢ ( ( ( 𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑓 ‘ 0 ) = 𝐴 ∧ ( 𝑓 ‘ 1 ) = 𝐵 ) ) ) → ran ( ℎ ∈ ∪ ( Base ‘ ( 𝐽 π1 ( 𝑓 ‘ 0 ) ) ) ↦ 〈 [ ℎ ] ( ≃ph ‘ 𝐽 ) , [ ( ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( 𝑓 ‘ ( 1 − 𝑥 ) ) ) ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝑓 ) ) ] ( ≃ph ‘ 𝐽 ) 〉 ) ∈ ( ( 𝐽 π1 ( 𝑓 ‘ 0 ) ) GrpIso ( 𝐽 π1 ( 𝑓 ‘ 1 ) ) ) ) |
21 |
|
simprrl |
⊢ ( ( ( 𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑓 ‘ 0 ) = 𝐴 ∧ ( 𝑓 ‘ 1 ) = 𝐵 ) ) ) → ( 𝑓 ‘ 0 ) = 𝐴 ) |
22 |
21
|
oveq2d |
⊢ ( ( ( 𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑓 ‘ 0 ) = 𝐴 ∧ ( 𝑓 ‘ 1 ) = 𝐵 ) ) ) → ( 𝐽 π1 ( 𝑓 ‘ 0 ) ) = ( 𝐽 π1 𝐴 ) ) |
23 |
22 2
|
eqtr4di |
⊢ ( ( ( 𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑓 ‘ 0 ) = 𝐴 ∧ ( 𝑓 ‘ 1 ) = 𝐵 ) ) ) → ( 𝐽 π1 ( 𝑓 ‘ 0 ) ) = 𝑃 ) |
24 |
|
simprrr |
⊢ ( ( ( 𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑓 ‘ 0 ) = 𝐴 ∧ ( 𝑓 ‘ 1 ) = 𝐵 ) ) ) → ( 𝑓 ‘ 1 ) = 𝐵 ) |
25 |
24
|
oveq2d |
⊢ ( ( ( 𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑓 ‘ 0 ) = 𝐴 ∧ ( 𝑓 ‘ 1 ) = 𝐵 ) ) ) → ( 𝐽 π1 ( 𝑓 ‘ 1 ) ) = ( 𝐽 π1 𝐵 ) ) |
26 |
25 3
|
eqtr4di |
⊢ ( ( ( 𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑓 ‘ 0 ) = 𝐴 ∧ ( 𝑓 ‘ 1 ) = 𝐵 ) ) ) → ( 𝐽 π1 ( 𝑓 ‘ 1 ) ) = 𝑄 ) |
27 |
23 26
|
oveq12d |
⊢ ( ( ( 𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑓 ‘ 0 ) = 𝐴 ∧ ( 𝑓 ‘ 1 ) = 𝐵 ) ) ) → ( ( 𝐽 π1 ( 𝑓 ‘ 0 ) ) GrpIso ( 𝐽 π1 ( 𝑓 ‘ 1 ) ) ) = ( 𝑃 GrpIso 𝑄 ) ) |
28 |
20 27
|
eleqtrd |
⊢ ( ( ( 𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑓 ‘ 0 ) = 𝐴 ∧ ( 𝑓 ‘ 1 ) = 𝐵 ) ) ) → ran ( ℎ ∈ ∪ ( Base ‘ ( 𝐽 π1 ( 𝑓 ‘ 0 ) ) ) ↦ 〈 [ ℎ ] ( ≃ph ‘ 𝐽 ) , [ ( ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( 𝑓 ‘ ( 1 − 𝑥 ) ) ) ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝑓 ) ) ] ( ≃ph ‘ 𝐽 ) 〉 ) ∈ ( 𝑃 GrpIso 𝑄 ) ) |
29 |
|
brgici |
⊢ ( ran ( ℎ ∈ ∪ ( Base ‘ ( 𝐽 π1 ( 𝑓 ‘ 0 ) ) ) ↦ 〈 [ ℎ ] ( ≃ph ‘ 𝐽 ) , [ ( ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( 𝑓 ‘ ( 1 − 𝑥 ) ) ) ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝑓 ) ) ] ( ≃ph ‘ 𝐽 ) 〉 ) ∈ ( 𝑃 GrpIso 𝑄 ) → 𝑃 ≃𝑔 𝑄 ) |
30 |
28 29
|
syl |
⊢ ( ( ( 𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑓 ‘ 0 ) = 𝐴 ∧ ( 𝑓 ‘ 1 ) = 𝐵 ) ) ) → 𝑃 ≃𝑔 𝑄 ) |
31 |
6 30
|
rexlimddv |
⊢ ( ( 𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝑃 ≃𝑔 𝑄 ) |