Metamath Proof Explorer


Theorem pi1xfrgim

Description: The mapping G between fundamental groups is an isomorphism. (Contributed by Mario Carneiro, 12-Feb-2015)

Ref Expression
Hypotheses pi1xfr.p 𝑃 = ( 𝐽 π1 ( 𝐹 ‘ 0 ) )
pi1xfr.q 𝑄 = ( 𝐽 π1 ( 𝐹 ‘ 1 ) )
pi1xfr.b 𝐵 = ( Base ‘ 𝑃 )
pi1xfr.g 𝐺 = ran ( 𝑔 𝐵 ↦ ⟨ [ 𝑔 ] ( ≃ph𝐽 ) , [ ( 𝐼 ( *𝑝𝐽 ) ( 𝑔 ( *𝑝𝐽 ) 𝐹 ) ) ] ( ≃ph𝐽 ) ⟩ )
pi1xfr.j ( 𝜑𝐽 ∈ ( TopOn ‘ 𝑋 ) )
pi1xfr.f ( 𝜑𝐹 ∈ ( II Cn 𝐽 ) )
pi1xfr.i 𝐼 = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( 1 − 𝑥 ) ) )
Assertion pi1xfrgim ( 𝜑𝐺 ∈ ( 𝑃 GrpIso 𝑄 ) )

Proof

Step Hyp Ref Expression
1 pi1xfr.p 𝑃 = ( 𝐽 π1 ( 𝐹 ‘ 0 ) )
2 pi1xfr.q 𝑄 = ( 𝐽 π1 ( 𝐹 ‘ 1 ) )
3 pi1xfr.b 𝐵 = ( Base ‘ 𝑃 )
4 pi1xfr.g 𝐺 = ran ( 𝑔 𝐵 ↦ ⟨ [ 𝑔 ] ( ≃ph𝐽 ) , [ ( 𝐼 ( *𝑝𝐽 ) ( 𝑔 ( *𝑝𝐽 ) 𝐹 ) ) ] ( ≃ph𝐽 ) ⟩ )
5 pi1xfr.j ( 𝜑𝐽 ∈ ( TopOn ‘ 𝑋 ) )
6 pi1xfr.f ( 𝜑𝐹 ∈ ( II Cn 𝐽 ) )
7 pi1xfr.i 𝐼 = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( 1 − 𝑥 ) ) )
8 1 2 3 4 5 6 7 pi1xfr ( 𝜑𝐺 ∈ ( 𝑃 GrpHom 𝑄 ) )
9 eqid ran ( 𝑦 ( Base ‘ 𝑄 ) ↦ ⟨ [ 𝑦 ] ( ≃ph𝐽 ) , [ ( 𝐹 ( *𝑝𝐽 ) ( 𝑦 ( *𝑝𝐽 ) 𝐼 ) ) ] ( ≃ph𝐽 ) ⟩ ) = ran ( 𝑦 ( Base ‘ 𝑄 ) ↦ ⟨ [ 𝑦 ] ( ≃ph𝐽 ) , [ ( 𝐹 ( *𝑝𝐽 ) ( 𝑦 ( *𝑝𝐽 ) 𝐼 ) ) ] ( ≃ph𝐽 ) ⟩ )
10 1 2 3 4 5 6 7 9 pi1xfrcnv ( 𝜑 → ( 𝐺 = ran ( 𝑦 ( Base ‘ 𝑄 ) ↦ ⟨ [ 𝑦 ] ( ≃ph𝐽 ) , [ ( 𝐹 ( *𝑝𝐽 ) ( 𝑦 ( *𝑝𝐽 ) 𝐼 ) ) ] ( ≃ph𝐽 ) ⟩ ) ∧ 𝐺 ∈ ( 𝑄 GrpHom 𝑃 ) ) )
11 10 simprd ( 𝜑 𝐺 ∈ ( 𝑄 GrpHom 𝑃 ) )
12 isgim2 ( 𝐺 ∈ ( 𝑃 GrpIso 𝑄 ) ↔ ( 𝐺 ∈ ( 𝑃 GrpHom 𝑄 ) ∧ 𝐺 ∈ ( 𝑄 GrpHom 𝑃 ) ) )
13 8 11 12 sylanbrc ( 𝜑𝐺 ∈ ( 𝑃 GrpIso 𝑄 ) )