| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pi1xfr.p | ⊢ 𝑃  =  ( 𝐽  π1  ( 𝐹 ‘ 0 ) ) | 
						
							| 2 |  | pi1xfr.q | ⊢ 𝑄  =  ( 𝐽  π1  ( 𝐹 ‘ 1 ) ) | 
						
							| 3 |  | pi1xfr.b | ⊢ 𝐵  =  ( Base ‘ 𝑃 ) | 
						
							| 4 |  | pi1xfr.g | ⊢ 𝐺  =  ran  ( 𝑔  ∈  ∪  𝐵  ↦  〈 [ 𝑔 ] (  ≃ph ‘ 𝐽 ) ,  [ ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ] (  ≃ph ‘ 𝐽 ) 〉 ) | 
						
							| 5 |  | pi1xfr.j | ⊢ ( 𝜑  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 6 |  | pi1xfr.f | ⊢ ( 𝜑  →  𝐹  ∈  ( II  Cn  𝐽 ) ) | 
						
							| 7 |  | pi1xfr.i | ⊢ 𝐼  =  ( 𝑥  ∈  ( 0 [,] 1 )  ↦  ( 𝐹 ‘ ( 1  −  𝑥 ) ) ) | 
						
							| 8 | 1 2 3 4 5 6 7 | pi1xfr | ⊢ ( 𝜑  →  𝐺  ∈  ( 𝑃  GrpHom  𝑄 ) ) | 
						
							| 9 |  | eqid | ⊢ ran  ( 𝑦  ∈  ∪  ( Base ‘ 𝑄 )  ↦  〈 [ 𝑦 ] (  ≃ph ‘ 𝐽 ) ,  [ ( 𝐹 ( *𝑝 ‘ 𝐽 ) ( 𝑦 ( *𝑝 ‘ 𝐽 ) 𝐼 ) ) ] (  ≃ph ‘ 𝐽 ) 〉 )  =  ran  ( 𝑦  ∈  ∪  ( Base ‘ 𝑄 )  ↦  〈 [ 𝑦 ] (  ≃ph ‘ 𝐽 ) ,  [ ( 𝐹 ( *𝑝 ‘ 𝐽 ) ( 𝑦 ( *𝑝 ‘ 𝐽 ) 𝐼 ) ) ] (  ≃ph ‘ 𝐽 ) 〉 ) | 
						
							| 10 | 1 2 3 4 5 6 7 9 | pi1xfrcnv | ⊢ ( 𝜑  →  ( ◡ 𝐺  =  ran  ( 𝑦  ∈  ∪  ( Base ‘ 𝑄 )  ↦  〈 [ 𝑦 ] (  ≃ph ‘ 𝐽 ) ,  [ ( 𝐹 ( *𝑝 ‘ 𝐽 ) ( 𝑦 ( *𝑝 ‘ 𝐽 ) 𝐼 ) ) ] (  ≃ph ‘ 𝐽 ) 〉 )  ∧  ◡ 𝐺  ∈  ( 𝑄  GrpHom  𝑃 ) ) ) | 
						
							| 11 | 10 | simprd | ⊢ ( 𝜑  →  ◡ 𝐺  ∈  ( 𝑄  GrpHom  𝑃 ) ) | 
						
							| 12 |  | isgim2 | ⊢ ( 𝐺  ∈  ( 𝑃  GrpIso  𝑄 )  ↔  ( 𝐺  ∈  ( 𝑃  GrpHom  𝑄 )  ∧  ◡ 𝐺  ∈  ( 𝑄  GrpHom  𝑃 ) ) ) | 
						
							| 13 | 8 11 12 | sylanbrc | ⊢ ( 𝜑  →  𝐺  ∈  ( 𝑃  GrpIso  𝑄 ) ) |