Step |
Hyp |
Ref |
Expression |
1 |
|
pi1xfr.p |
⊢ 𝑃 = ( 𝐽 π1 ( 𝐹 ‘ 0 ) ) |
2 |
|
pi1xfr.q |
⊢ 𝑄 = ( 𝐽 π1 ( 𝐹 ‘ 1 ) ) |
3 |
|
pi1xfr.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
4 |
|
pi1xfr.g |
⊢ 𝐺 = ran ( 𝑔 ∈ ∪ 𝐵 ↦ 〈 [ 𝑔 ] ( ≃ph ‘ 𝐽 ) , [ ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ] ( ≃ph ‘ 𝐽 ) 〉 ) |
5 |
|
pi1xfr.j |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
6 |
|
pi1xfr.f |
⊢ ( 𝜑 → 𝐹 ∈ ( II Cn 𝐽 ) ) |
7 |
|
pi1xfr.i |
⊢ 𝐼 = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( 1 − 𝑥 ) ) ) |
8 |
1 2 3 4 5 6 7
|
pi1xfr |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝑃 GrpHom 𝑄 ) ) |
9 |
|
eqid |
⊢ ran ( 𝑦 ∈ ∪ ( Base ‘ 𝑄 ) ↦ 〈 [ 𝑦 ] ( ≃ph ‘ 𝐽 ) , [ ( 𝐹 ( *𝑝 ‘ 𝐽 ) ( 𝑦 ( *𝑝 ‘ 𝐽 ) 𝐼 ) ) ] ( ≃ph ‘ 𝐽 ) 〉 ) = ran ( 𝑦 ∈ ∪ ( Base ‘ 𝑄 ) ↦ 〈 [ 𝑦 ] ( ≃ph ‘ 𝐽 ) , [ ( 𝐹 ( *𝑝 ‘ 𝐽 ) ( 𝑦 ( *𝑝 ‘ 𝐽 ) 𝐼 ) ) ] ( ≃ph ‘ 𝐽 ) 〉 ) |
10 |
1 2 3 4 5 6 7 9
|
pi1xfrcnv |
⊢ ( 𝜑 → ( ◡ 𝐺 = ran ( 𝑦 ∈ ∪ ( Base ‘ 𝑄 ) ↦ 〈 [ 𝑦 ] ( ≃ph ‘ 𝐽 ) , [ ( 𝐹 ( *𝑝 ‘ 𝐽 ) ( 𝑦 ( *𝑝 ‘ 𝐽 ) 𝐼 ) ) ] ( ≃ph ‘ 𝐽 ) 〉 ) ∧ ◡ 𝐺 ∈ ( 𝑄 GrpHom 𝑃 ) ) ) |
11 |
10
|
simprd |
⊢ ( 𝜑 → ◡ 𝐺 ∈ ( 𝑄 GrpHom 𝑃 ) ) |
12 |
|
isgim2 |
⊢ ( 𝐺 ∈ ( 𝑃 GrpIso 𝑄 ) ↔ ( 𝐺 ∈ ( 𝑃 GrpHom 𝑄 ) ∧ ◡ 𝐺 ∈ ( 𝑄 GrpHom 𝑃 ) ) ) |
13 |
8 11 12
|
sylanbrc |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝑃 GrpIso 𝑄 ) ) |