Metamath Proof Explorer


Theorem pi1xfrgim

Description: The mapping G between fundamental groups is an isomorphism. (Contributed by Mario Carneiro, 12-Feb-2015)

Ref Expression
Hypotheses pi1xfr.p
|- P = ( J pi1 ( F ` 0 ) )
pi1xfr.q
|- Q = ( J pi1 ( F ` 1 ) )
pi1xfr.b
|- B = ( Base ` P )
pi1xfr.g
|- G = ran ( g e. U. B |-> <. [ g ] ( ~=ph ` J ) , [ ( I ( *p ` J ) ( g ( *p ` J ) F ) ) ] ( ~=ph ` J ) >. )
pi1xfr.j
|- ( ph -> J e. ( TopOn ` X ) )
pi1xfr.f
|- ( ph -> F e. ( II Cn J ) )
pi1xfr.i
|- I = ( x e. ( 0 [,] 1 ) |-> ( F ` ( 1 - x ) ) )
Assertion pi1xfrgim
|- ( ph -> G e. ( P GrpIso Q ) )

Proof

Step Hyp Ref Expression
1 pi1xfr.p
 |-  P = ( J pi1 ( F ` 0 ) )
2 pi1xfr.q
 |-  Q = ( J pi1 ( F ` 1 ) )
3 pi1xfr.b
 |-  B = ( Base ` P )
4 pi1xfr.g
 |-  G = ran ( g e. U. B |-> <. [ g ] ( ~=ph ` J ) , [ ( I ( *p ` J ) ( g ( *p ` J ) F ) ) ] ( ~=ph ` J ) >. )
5 pi1xfr.j
 |-  ( ph -> J e. ( TopOn ` X ) )
6 pi1xfr.f
 |-  ( ph -> F e. ( II Cn J ) )
7 pi1xfr.i
 |-  I = ( x e. ( 0 [,] 1 ) |-> ( F ` ( 1 - x ) ) )
8 1 2 3 4 5 6 7 pi1xfr
 |-  ( ph -> G e. ( P GrpHom Q ) )
9 eqid
 |-  ran ( y e. U. ( Base ` Q ) |-> <. [ y ] ( ~=ph ` J ) , [ ( F ( *p ` J ) ( y ( *p ` J ) I ) ) ] ( ~=ph ` J ) >. ) = ran ( y e. U. ( Base ` Q ) |-> <. [ y ] ( ~=ph ` J ) , [ ( F ( *p ` J ) ( y ( *p ` J ) I ) ) ] ( ~=ph ` J ) >. )
10 1 2 3 4 5 6 7 9 pi1xfrcnv
 |-  ( ph -> ( `' G = ran ( y e. U. ( Base ` Q ) |-> <. [ y ] ( ~=ph ` J ) , [ ( F ( *p ` J ) ( y ( *p ` J ) I ) ) ] ( ~=ph ` J ) >. ) /\ `' G e. ( Q GrpHom P ) ) )
11 10 simprd
 |-  ( ph -> `' G e. ( Q GrpHom P ) )
12 isgim2
 |-  ( G e. ( P GrpIso Q ) <-> ( G e. ( P GrpHom Q ) /\ `' G e. ( Q GrpHom P ) ) )
13 8 11 12 sylanbrc
 |-  ( ph -> G e. ( P GrpIso Q ) )