| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pi1xfr.p |  |-  P = ( J pi1 ( F ` 0 ) ) | 
						
							| 2 |  | pi1xfr.q |  |-  Q = ( J pi1 ( F ` 1 ) ) | 
						
							| 3 |  | pi1xfr.b |  |-  B = ( Base ` P ) | 
						
							| 4 |  | pi1xfr.g |  |-  G = ran ( g e. U. B |-> <. [ g ] ( ~=ph ` J ) , [ ( I ( *p ` J ) ( g ( *p ` J ) F ) ) ] ( ~=ph ` J ) >. ) | 
						
							| 5 |  | pi1xfr.j |  |-  ( ph -> J e. ( TopOn ` X ) ) | 
						
							| 6 |  | pi1xfr.f |  |-  ( ph -> F e. ( II Cn J ) ) | 
						
							| 7 |  | pi1xfr.i |  |-  I = ( x e. ( 0 [,] 1 ) |-> ( F ` ( 1 - x ) ) ) | 
						
							| 8 | 1 2 3 4 5 6 7 | pi1xfr |  |-  ( ph -> G e. ( P GrpHom Q ) ) | 
						
							| 9 |  | eqid |  |-  ran ( y e. U. ( Base ` Q ) |-> <. [ y ] ( ~=ph ` J ) , [ ( F ( *p ` J ) ( y ( *p ` J ) I ) ) ] ( ~=ph ` J ) >. ) = ran ( y e. U. ( Base ` Q ) |-> <. [ y ] ( ~=ph ` J ) , [ ( F ( *p ` J ) ( y ( *p ` J ) I ) ) ] ( ~=ph ` J ) >. ) | 
						
							| 10 | 1 2 3 4 5 6 7 9 | pi1xfrcnv |  |-  ( ph -> ( `' G = ran ( y e. U. ( Base ` Q ) |-> <. [ y ] ( ~=ph ` J ) , [ ( F ( *p ` J ) ( y ( *p ` J ) I ) ) ] ( ~=ph ` J ) >. ) /\ `' G e. ( Q GrpHom P ) ) ) | 
						
							| 11 | 10 | simprd |  |-  ( ph -> `' G e. ( Q GrpHom P ) ) | 
						
							| 12 |  | isgim2 |  |-  ( G e. ( P GrpIso Q ) <-> ( G e. ( P GrpHom Q ) /\ `' G e. ( Q GrpHom P ) ) ) | 
						
							| 13 | 8 11 12 | sylanbrc |  |-  ( ph -> G e. ( P GrpIso Q ) ) |