| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pi1xfr.p |
|- P = ( J pi1 ( F ` 0 ) ) |
| 2 |
|
pi1xfr.q |
|- Q = ( J pi1 ( F ` 1 ) ) |
| 3 |
|
pi1xfr.b |
|- B = ( Base ` P ) |
| 4 |
|
pi1xfr.g |
|- G = ran ( g e. U. B |-> <. [ g ] ( ~=ph ` J ) , [ ( I ( *p ` J ) ( g ( *p ` J ) F ) ) ] ( ~=ph ` J ) >. ) |
| 5 |
|
pi1xfr.j |
|- ( ph -> J e. ( TopOn ` X ) ) |
| 6 |
|
pi1xfr.f |
|- ( ph -> F e. ( II Cn J ) ) |
| 7 |
|
pi1xfr.i |
|- I = ( x e. ( 0 [,] 1 ) |-> ( F ` ( 1 - x ) ) ) |
| 8 |
1 2 3 4 5 6 7
|
pi1xfr |
|- ( ph -> G e. ( P GrpHom Q ) ) |
| 9 |
|
eqid |
|- ran ( y e. U. ( Base ` Q ) |-> <. [ y ] ( ~=ph ` J ) , [ ( F ( *p ` J ) ( y ( *p ` J ) I ) ) ] ( ~=ph ` J ) >. ) = ran ( y e. U. ( Base ` Q ) |-> <. [ y ] ( ~=ph ` J ) , [ ( F ( *p ` J ) ( y ( *p ` J ) I ) ) ] ( ~=ph ` J ) >. ) |
| 10 |
1 2 3 4 5 6 7 9
|
pi1xfrcnv |
|- ( ph -> ( `' G = ran ( y e. U. ( Base ` Q ) |-> <. [ y ] ( ~=ph ` J ) , [ ( F ( *p ` J ) ( y ( *p ` J ) I ) ) ] ( ~=ph ` J ) >. ) /\ `' G e. ( Q GrpHom P ) ) ) |
| 11 |
10
|
simprd |
|- ( ph -> `' G e. ( Q GrpHom P ) ) |
| 12 |
|
isgim2 |
|- ( G e. ( P GrpIso Q ) <-> ( G e. ( P GrpHom Q ) /\ `' G e. ( Q GrpHom P ) ) ) |
| 13 |
8 11 12
|
sylanbrc |
|- ( ph -> G e. ( P GrpIso Q ) ) |