Metamath Proof Explorer


Theorem pi1xfrgim

Description: The mapping G between fundamental groups is an isomorphism. (Contributed by Mario Carneiro, 12-Feb-2015)

Ref Expression
Hypotheses pi1xfr.p P = J π 1 F 0
pi1xfr.q Q = J π 1 F 1
pi1xfr.b B = Base P
pi1xfr.g G = ran g B g ph J I * 𝑝 J g * 𝑝 J F ph J
pi1xfr.j φ J TopOn X
pi1xfr.f φ F II Cn J
pi1xfr.i I = x 0 1 F 1 x
Assertion pi1xfrgim φ G P GrpIso Q

Proof

Step Hyp Ref Expression
1 pi1xfr.p P = J π 1 F 0
2 pi1xfr.q Q = J π 1 F 1
3 pi1xfr.b B = Base P
4 pi1xfr.g G = ran g B g ph J I * 𝑝 J g * 𝑝 J F ph J
5 pi1xfr.j φ J TopOn X
6 pi1xfr.f φ F II Cn J
7 pi1xfr.i I = x 0 1 F 1 x
8 1 2 3 4 5 6 7 pi1xfr φ G P GrpHom Q
9 eqid ran y Base Q y ph J F * 𝑝 J y * 𝑝 J I ph J = ran y Base Q y ph J F * 𝑝 J y * 𝑝 J I ph J
10 1 2 3 4 5 6 7 9 pi1xfrcnv φ G -1 = ran y Base Q y ph J F * 𝑝 J y * 𝑝 J I ph J G -1 Q GrpHom P
11 10 simprd φ G -1 Q GrpHom P
12 isgim2 G P GrpIso Q G P GrpHom Q G -1 Q GrpHom P
13 8 11 12 sylanbrc φ G P GrpIso Q