| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pi1co.p |
|
| 2 |
|
pi1co.q |
|
| 3 |
|
pi1co.v |
|
| 4 |
|
pi1co.g |
|
| 5 |
|
pi1co.j |
|
| 6 |
|
pi1co.f |
|
| 7 |
|
pi1co.a |
|
| 8 |
|
pi1co.b |
|
| 9 |
|
fvex |
|
| 10 |
|
ecexg |
|
| 11 |
9 10
|
mp1i |
|
| 12 |
|
eqid |
|
| 13 |
|
cntop2 |
|
| 14 |
6 13
|
syl |
|
| 15 |
|
toptopon2 |
|
| 16 |
14 15
|
sylib |
|
| 17 |
16
|
adantr |
|
| 18 |
|
cnf2 |
|
| 19 |
5 16 6 18
|
syl3anc |
|
| 20 |
19 7
|
ffvelcdmd |
|
| 21 |
8 20
|
eqeltrrd |
|
| 22 |
21
|
adantr |
|
| 23 |
3
|
a1i |
|
| 24 |
1 5 7 23
|
pi1eluni |
|
| 25 |
24
|
biimpa |
|
| 26 |
25
|
simp1d |
|
| 27 |
6
|
adantr |
|
| 28 |
|
cnco |
|
| 29 |
26 27 28
|
syl2anc |
|
| 30 |
|
iitopon |
|
| 31 |
|
cnf2 |
|
| 32 |
30 5 26 31
|
mp3an2ani |
|
| 33 |
|
0elunit |
|
| 34 |
|
fvco3 |
|
| 35 |
32 33 34
|
sylancl |
|
| 36 |
25
|
simp2d |
|
| 37 |
36
|
fveq2d |
|
| 38 |
8
|
adantr |
|
| 39 |
35 37 38
|
3eqtrd |
|
| 40 |
|
1elunit |
|
| 41 |
|
fvco3 |
|
| 42 |
32 40 41
|
sylancl |
|
| 43 |
25
|
simp3d |
|
| 44 |
43
|
fveq2d |
|
| 45 |
42 44 38
|
3eqtrd |
|
| 46 |
2 12 17 22 29 39 45
|
elpi1i |
|
| 47 |
|
eceq1 |
|
| 48 |
|
coeq2 |
|
| 49 |
48
|
eceq1d |
|
| 50 |
|
phtpcer |
|
| 51 |
50
|
a1i |
|
| 52 |
|
simpr3 |
|
| 53 |
|
phtpcer |
|
| 54 |
53
|
a1i |
|
| 55 |
|
simpr1 |
|
| 56 |
24
|
adantr |
|
| 57 |
55 56
|
mpbid |
|
| 58 |
57
|
simp1d |
|
| 59 |
54 58
|
erth |
|
| 60 |
52 59
|
mpbird |
|
| 61 |
6
|
adantr |
|
| 62 |
60 61
|
phtpcco2 |
|
| 63 |
51 62
|
erthi |
|
| 64 |
4 11 46 47 49 63
|
fliftfund |
|
| 65 |
4 11 46
|
fliftf |
|
| 66 |
64 65
|
mpbid |
|
| 67 |
1 5 7 23
|
pi1bas2 |
|
| 68 |
|
df-qs |
|
| 69 |
|
eqid |
|
| 70 |
69
|
rnmpt |
|
| 71 |
68 70
|
eqtr4i |
|
| 72 |
67 71
|
eqtrdi |
|
| 73 |
72
|
feq2d |
|
| 74 |
66 73
|
mpbird |
|