Metamath Proof Explorer


Theorem pi1coval

Description: The value of the loop transfer function on the equivalence class of a path. (Contributed by Mario Carneiro, 10-Aug-2015) (Proof shortened by Mario Carneiro, 23-Dec-2016)

Ref Expression
Hypotheses pi1co.p P = J π 1 A
pi1co.q Q = K π 1 B
pi1co.v V = Base P
pi1co.g G = ran g V g ph J F g ph K
pi1co.j φ J TopOn X
pi1co.f φ F J Cn K
pi1co.a φ A X
pi1co.b φ F A = B
Assertion pi1coval φ T V G T ph J = F T ph K

Proof

Step Hyp Ref Expression
1 pi1co.p P = J π 1 A
2 pi1co.q Q = K π 1 B
3 pi1co.v V = Base P
4 pi1co.g G = ran g V g ph J F g ph K
5 pi1co.j φ J TopOn X
6 pi1co.f φ F J Cn K
7 pi1co.a φ A X
8 pi1co.b φ F A = B
9 fvex ph J V
10 ecexg ph J V g ph J V
11 9 10 mp1i φ g V g ph J V
12 fvex ph K V
13 ecexg ph K V F g ph K V
14 12 13 mp1i φ g V F g ph K V
15 eceq1 g = T g ph J = T ph J
16 coeq2 g = T F g = F T
17 16 eceq1d g = T F g ph K = F T ph K
18 1 2 3 4 5 6 7 8 pi1cof φ G : V Base Q
19 18 ffund φ Fun G
20 4 11 14 15 17 19 fliftval φ T V G T ph J = F T ph K