Metamath Proof Explorer


Theorem pi1coghm

Description: The mapping G between fundamental groups is a group homomorphism. (Contributed by Mario Carneiro, 10-Aug-2015) (Revised by Mario Carneiro, 23-Dec-2016)

Ref Expression
Hypotheses pi1co.p P = J π 1 A
pi1co.q Q = K π 1 B
pi1co.v V = Base P
pi1co.g G = ran g V g ph J F g ph K
pi1co.j φ J TopOn X
pi1co.f φ F J Cn K
pi1co.a φ A X
pi1co.b φ F A = B
Assertion pi1coghm φ G P GrpHom Q

Proof

Step Hyp Ref Expression
1 pi1co.p P = J π 1 A
2 pi1co.q Q = K π 1 B
3 pi1co.v V = Base P
4 pi1co.g G = ran g V g ph J F g ph K
5 pi1co.j φ J TopOn X
6 pi1co.f φ F J Cn K
7 pi1co.a φ A X
8 pi1co.b φ F A = B
9 1 pi1grp J TopOn X A X P Grp
10 5 7 9 syl2anc φ P Grp
11 cntop2 F J Cn K K Top
12 6 11 syl φ K Top
13 toptopon2 K Top K TopOn K
14 12 13 sylib φ K TopOn K
15 cnf2 J TopOn X K TopOn K F J Cn K F : X K
16 5 14 6 15 syl3anc φ F : X K
17 16 7 ffvelrnd φ F A K
18 8 17 eqeltrrd φ B K
19 2 pi1grp K TopOn K B K Q Grp
20 14 18 19 syl2anc φ Q Grp
21 1 2 3 4 5 6 7 8 pi1cof φ G : V Base Q
22 3 a1i φ V = Base P
23 1 5 7 22 pi1bas2 φ V = V / ph J
24 23 eleq2d φ y V y V / ph J
25 24 biimpa φ y V y V / ph J
26 eqid V / ph J = V / ph J
27 fvoveq1 f ph J = y G f ph J + P z = G y + P z
28 fveq2 f ph J = y G f ph J = G y
29 28 oveq1d f ph J = y G f ph J + Q G z = G y + Q G z
30 27 29 eqeq12d f ph J = y G f ph J + P z = G f ph J + Q G z G y + P z = G y + Q G z
31 30 ralbidv f ph J = y z V G f ph J + P z = G f ph J + Q G z z V G y + P z = G y + Q G z
32 oveq2 h ph J = z f ph J + P h ph J = f ph J + P z
33 32 fveq2d h ph J = z G f ph J + P h ph J = G f ph J + P z
34 fveq2 h ph J = z G h ph J = G z
35 34 oveq2d h ph J = z G f ph J + Q G h ph J = G f ph J + Q G z
36 33 35 eqeq12d h ph J = z G f ph J + P h ph J = G f ph J + Q G h ph J G f ph J + P z = G f ph J + Q G z
37 1 5 7 22 pi1eluni φ f V f II Cn J f 0 = A f 1 = A
38 37 biimpa φ f V f II Cn J f 0 = A f 1 = A
39 38 simp1d φ f V f II Cn J
40 39 adantr φ f V h V f II Cn J
41 5 adantr φ f V J TopOn X
42 7 adantr φ f V A X
43 3 a1i φ f V V = Base P
44 1 41 42 43 pi1eluni φ f V h V h II Cn J h 0 = A h 1 = A
45 44 biimpa φ f V h V h II Cn J h 0 = A h 1 = A
46 45 simp1d φ f V h V h II Cn J
47 38 simp3d φ f V f 1 = A
48 47 adantr φ f V h V f 1 = A
49 45 simp2d φ f V h V h 0 = A
50 48 49 eqtr4d φ f V h V f 1 = h 0
51 6 ad2antrr φ f V h V F J Cn K
52 40 46 50 51 copco φ f V h V F f * 𝑝 J h = F f * 𝑝 K F h
53 52 eceq1d φ f V h V F f * 𝑝 J h ph K = F f * 𝑝 K F h ph K
54 40 46 50 pcocn φ f V h V f * 𝑝 J h II Cn J
55 40 46 pco0 φ f V h V f * 𝑝 J h 0 = f 0
56 38 simp2d φ f V f 0 = A
57 56 adantr φ f V h V f 0 = A
58 55 57 eqtrd φ f V h V f * 𝑝 J h 0 = A
59 40 46 pco1 φ f V h V f * 𝑝 J h 1 = h 1
60 45 simp3d φ f V h V h 1 = A
61 59 60 eqtrd φ f V h V f * 𝑝 J h 1 = A
62 5 ad2antrr φ f V h V J TopOn X
63 7 ad2antrr φ f V h V A X
64 3 a1i φ f V h V V = Base P
65 1 62 63 64 pi1eluni φ f V h V f * 𝑝 J h V f * 𝑝 J h II Cn J f * 𝑝 J h 0 = A f * 𝑝 J h 1 = A
66 54 58 61 65 mpbir3and φ f V h V f * 𝑝 J h V
67 1 2 3 4 5 6 7 8 pi1coval φ f * 𝑝 J h V G f * 𝑝 J h ph J = F f * 𝑝 J h ph K
68 67 adantlr φ f V f * 𝑝 J h V G f * 𝑝 J h ph J = F f * 𝑝 J h ph K
69 66 68 syldan φ f V h V G f * 𝑝 J h ph J = F f * 𝑝 J h ph K
70 eqid Base Q = Base Q
71 14 ad2antrr φ f V h V K TopOn K
72 18 ad2antrr φ f V h V B K
73 eqid + Q = + Q
74 6 adantr φ f V F J Cn K
75 cnco f II Cn J F J Cn K F f II Cn K
76 39 74 75 syl2anc φ f V F f II Cn K
77 iitopon II TopOn 0 1
78 cnf2 II TopOn 0 1 J TopOn X f II Cn J f : 0 1 X
79 77 41 39 78 mp3an2i φ f V f : 0 1 X
80 0elunit 0 0 1
81 fvco3 f : 0 1 X 0 0 1 F f 0 = F f 0
82 79 80 81 sylancl φ f V F f 0 = F f 0
83 56 fveq2d φ f V F f 0 = F A
84 8 adantr φ f V F A = B
85 82 83 84 3eqtrd φ f V F f 0 = B
86 1elunit 1 0 1
87 fvco3 f : 0 1 X 1 0 1 F f 1 = F f 1
88 79 86 87 sylancl φ f V F f 1 = F f 1
89 47 fveq2d φ f V F f 1 = F A
90 88 89 84 3eqtrd φ f V F f 1 = B
91 14 adantr φ f V K TopOn K
92 18 adantr φ f V B K
93 eqidd φ f V Base Q = Base Q
94 2 91 92 93 pi1eluni φ f V F f Base Q F f II Cn K F f 0 = B F f 1 = B
95 76 85 90 94 mpbir3and φ f V F f Base Q
96 95 adantr φ f V h V F f Base Q
97 cnco h II Cn J F J Cn K F h II Cn K
98 46 51 97 syl2anc φ f V h V F h II Cn K
99 cnf2 II TopOn 0 1 J TopOn X h II Cn J h : 0 1 X
100 77 62 46 99 mp3an2i φ f V h V h : 0 1 X
101 fvco3 h : 0 1 X 0 0 1 F h 0 = F h 0
102 100 80 101 sylancl φ f V h V F h 0 = F h 0
103 49 fveq2d φ f V h V F h 0 = F A
104 8 ad2antrr φ f V h V F A = B
105 102 103 104 3eqtrd φ f V h V F h 0 = B
106 fvco3 h : 0 1 X 1 0 1 F h 1 = F h 1
107 100 86 106 sylancl φ f V h V F h 1 = F h 1
108 60 fveq2d φ f V h V F h 1 = F A
109 107 108 104 3eqtrd φ f V h V F h 1 = B
110 eqidd φ Base Q = Base Q
111 2 14 18 110 pi1eluni φ F h Base Q F h II Cn K F h 0 = B F h 1 = B
112 111 ad2antrr φ f V h V F h Base Q F h II Cn K F h 0 = B F h 1 = B
113 98 105 109 112 mpbir3and φ f V h V F h Base Q
114 2 70 71 72 73 96 113 pi1addval φ f V h V F f ph K + Q F h ph K = F f * 𝑝 K F h ph K
115 53 69 114 3eqtr4d φ f V h V G f * 𝑝 J h ph J = F f ph K + Q F h ph K
116 eqid + P = + P
117 simplr φ f V h V f V
118 simpr φ f V h V h V
119 1 3 62 63 116 117 118 pi1addval φ f V h V f ph J + P h ph J = f * 𝑝 J h ph J
120 119 fveq2d φ f V h V G f ph J + P h ph J = G f * 𝑝 J h ph J
121 1 2 3 4 5 6 7 8 pi1coval φ f V G f ph J = F f ph K
122 121 adantr φ f V h V G f ph J = F f ph K
123 1 2 3 4 5 6 7 8 pi1coval φ h V G h ph J = F h ph K
124 123 adantlr φ f V h V G h ph J = F h ph K
125 122 124 oveq12d φ f V h V G f ph J + Q G h ph J = F f ph K + Q F h ph K
126 115 120 125 3eqtr4d φ f V h V G f ph J + P h ph J = G f ph J + Q G h ph J
127 26 36 126 ectocld φ f V z V / ph J G f ph J + P z = G f ph J + Q G z
128 127 ralrimiva φ f V z V / ph J G f ph J + P z = G f ph J + Q G z
129 23 adantr φ f V V = V / ph J
130 129 raleqdv φ f V z V G f ph J + P z = G f ph J + Q G z z V / ph J G f ph J + P z = G f ph J + Q G z
131 128 130 mpbird φ f V z V G f ph J + P z = G f ph J + Q G z
132 26 31 131 ectocld φ y V / ph J z V G y + P z = G y + Q G z
133 25 132 syldan φ y V z V G y + P z = G y + Q G z
134 133 ralrimiva φ y V z V G y + P z = G y + Q G z
135 21 134 jca φ G : V Base Q y V z V G y + P z = G y + Q G z
136 3 70 116 73 isghm G P GrpHom Q P Grp Q Grp G : V Base Q y V z V G y + P z = G y + Q G z
137 10 20 135 136 syl21anbrc φ G P GrpHom Q